• Title/Summary/Keyword: 연직 지진계수

Search Result 3, Processing Time 0.023 seconds

Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area (강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • In Korea, there are many regulations and cases for horizontal seismic coefficient to pseudo-static analysis of slope, but there are insufficient regulations and cases for vertical seismic coefficient. Therefore, geological investigation and laboratory tests were conducted to analyze the effect of the vertical seismic coefficient on slope stability, and pseudo-static analyses based on infinite slope stability analysis were performed by using those results. As a result, if the earthquake magnitude is less than M 5.0, the effect of the vertical seismic coefficient is not significant, and if the earthquake magnitude is more than M 6.0, the vertical seismic coefficient largely increases the unstable areas of Fs ≤ 1.1. These tendency is more distinct in rainfall condition than without rainfall condition.

Evaluating Method of Solitary Wave-Induced Tsunami Force Acting on an Onshore Bridge in Coastal Area (연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력의 평가법)

  • Kim, Do-Sam;Kyung, Kab-Soo;Lee, Yoon-Doo;Woo, Kyung Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • In this study, the solitary wave-induced tsunami force acting on an onshore bridges in coastal area was numerically modelled by means of TWOPM-3D based on Navier-Stokes solver and VOF method which can track free surface effectively. The validity of numerical analysis was verified by comparing the experimental tsunami bore force acting on vertical wall and column structure. In particular, the characteristics of tsunami force with the changing tsunami intensity were surveyed through numerical experiments. The availability of 3-dimensional numerical analysis was reviewed through the comparison between the existing numerical results and design criteria for each drag force coefficient by applying Morison equation considering only drag force. As reasonable and high-precision estimation method of tsunami force, it was suggested to apply the estimation method taking drag and inertial force into consideration at the same time.

Earthquake Response Analyses of Underground Structures Using Displacement Responses of Soil (응답변위법을 이용한 지중구조물의 지진해석)

  • Kim, Doo-Kie;Seo, Hyeong-Yeol;Park, Jin-Woo;Choe, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • This study performed earthquake response analyses of underground structures using displacement responses of soil. In this study, spring coefficients of surrounding soil proposed by specifications and researchers were adopted and then their corresponding analysis results were compared. The free field analyses using ProShake were carried out in order to predict ground responses of the field without underground structures. Several earthquakes such as El Centro, Ofunato, and Hachinohe earthquakes were considered to calculate maximum displacements. Numerical examples were analyzed, and then the results were compared and commented depending on spring coefficients of soil for the analyses using displacement responses of soil. The soil coefficients ranged from 0.05 to 14.39 times of those calculated by Korean Bridge Design Specification (2005). In conclusion, the coefficients of soil proposed by standard specifications seemed to be overestimated compared with those by the finite element method(FEM).