• Title/Summary/Keyword: 연직유속분포

Search Result 77, Processing Time 0.021 seconds

Mixing of Sea Waters in the Northern Part of the East China Sea in Summer (하계 동중국해 북부 해역에서의 해수 혼합)

  • Jang, Sung-Tae;Lee, Jae-Hak;Hong, Chang-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.390-399
    • /
    • 2007
  • In order to investigate the mixing of sea waters on the continental shelf in the northern East China Sea, Korea Ocean Research and Development Institute conducted hydrographic surveys including turbulence measurements using the R/V Eardo in August 2005 and August 2006. The turbulent kinetic energy dissipation rates based on velocity shear measurements are estimated to be $10^{-7}{\sim}10^{4}$, $10^{-7}{\sim}10^{-6}$, and $10^{-7}$ W/kg in the surface layer, bottom layer, and lower thermocline, respectively. The data sets suggest that surface layer water is being constantly mixed by winds. High dissipation rate in the lower thermocline seems to be caused by internal waves. The bottom layer with high dissipation rate also shows high turbidity, indicating the effect of tidal stirring turbulence. The vertical eddy diffusivities are $10^{-3}{\sim}10^{-2}m^2/s$ near the bottom, and these high values appear to arise from both the low stability and high turbulent mixing.

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

The Relation of Cross-sectional Residual Current and Stratification during Spring and Neap Tidal Cycle at Seokmo Channel, Han River Estuary Located at South Korea (대.소조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구)

  • Choi, Nak-Yong;Yoon, Byung-Il;Kim, Jong-Wook;Song, Jin-Il;Lim, Eun-Pyo;Woo, Seung-Bhum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • This study analyzed cross-sectional variations in residual current and strengths of stratification by observing cross-sectional velocity and salinity during spring tide and neap tide, respectively, for continuous 13-hour periods at 2 observation lines at northern and southern end of Seokmo Channel, which is located west of Ganghwado. Salinity distribution of channel depends on not only neap and spring tide but also impact of salinity. The residual current component was obtained by removing $M_2$ and $M_4$ tidal components that were extracted using the least squares method on 13-hour velocity component. Cross-section of residual velocity at northern and southern end of Seokmo Channel exhibited southward residual components at channel's surface layer, but northward residual current was observed at channel's bottom layer, clearly showing a 2-layer tidal circulation between surface and bottom layers. The variation in location of appearing northward residual current according to changes in spring and neap tidal cycle and its correlation with stratification were analyzed using the Richardson number and Simpsonhunter index. At northern and southern end of Seokmo Channel, northward residual current appears in the location where Richardson number is large, Simpson-hunter index appears as a value greater than 4.

Estimation of Bed Resistance in Gravel-bed Rivers Using the Equivalent Roughness Height (등가조고를 이용한 자갈하천의 하상저항 산정)

  • Kim, Ji-Sung;Kim, Yong-Jeon;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.619-629
    • /
    • 2009
  • The objective of this study is to estimate bed-resistance in gravel-bed rivers using the equivalent roughness height($k_s$). We calculated the friction factor(f) with the measured data from 8 domestic gravel-bed rivers and investigated the size distributions of the bed materials. The averaged $k_s$ in each cross-section, which is determined under the hypothesis that the vertical velocity distribution follows the logarithmic law, is compared with the reach $k_s$ which is calculated with the cumulative grain diameter distribution curve of bed materials. Moreover, the applicability of existing formulae, such as Strickler type equations, is examined by comparing with Manning's n value converted from the $k_s$. According to the results, the reach $k_s$ proves to be a good indicator of representative characteristic of bed materials in a reach, and the Manning's n based on the reach $k_s$ is appropriate for practical estimation of the bed-resistance, for RMS errors between calculated and measured Manning's n is less than 0.003. The correlation between the $k_s$ and specified bed-material size($D_i$) is very low, so it is difficult to select a proper one among the existing empirical equations.

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Analysis of the mixing effect of the confluence by the difference in water temperature between the main stream and the tributary (본류와 지류의 수온 차에 의한 합류부 혼합 양상 분석)

  • Ahn, Seol Ha;Lee, Chang Hyun;Kim, Kyung Dong;Kim, Dong Su;Ryu, Si Wan;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • The river confluence is a section in which two rivers with different topographical and hyrodynamic characteristics are combined into one, and it is a section in which rapid flow, inflow of sediments, and hydrological topographic changes occur. In the confluence section, the flow of fluid occurs due to the difference in density due to the type of material or temperature difference, which is called a density flow. It is necessary to accurately measure and observe the confluence section including a certain section of the main stream and tributaries in order to understand the mixing behavior of the water body caused by the density difference. A comprehensive analysis of this water mixture can be obtained by obtaining flow field and flow rate information, but there is a limit to understanding the mixing of water bodies with different physical properties and water quality characteristics of rivers flowing with stratigraphic flow. Therefore, this study attempts to grasp the density flow through the water temperature distribution in the confluence section. Among the extensive data of the river, vertical data and water surface data were acquired, and through this, the stratification phenomenon of the confluence was to be confirmed. It was intended to analyze the mixed pattern of the confluence by analyzing the water mixing pattern according to the water temperature difference using the vertical data obtained by measuring the repair volume by installing the ADCP on the side of the boat and measuring the real-time concentration using YSI. This study can supplement the analysis results of the existing water quality measurement in two dimensions. Based on the comparative analysis, it will be used to investigate the current status of stratified sections in the water layer and identify the mixing characteristics of the downstream section of the river.

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.