• Title/Summary/Keyword: 연수후각

Search Result 5, Processing Time 0.021 seconds

ULTRASTRUCTURAL ANALYSIS OF TOOTH PULP AFFERENTS TERMINALS IN THE MEDULLARY DORSAL HORN OF THE RAT (치수유래 구심성 신경섬유의 삼차신경 감각핵군에서의 연접특성)

  • Bae, Yong-Chul;Lee, Eun-Hee;Choy, Min-Ki;Hong, Su-Hyung;Kim, Hyun-Jung;Na, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.219-227
    • /
    • 2001
  • Little is known about processing mechanism of pain sensation of the oral cavity at the 1st synapse of trigeminal sensory nuclei. Serial ultrathin sections of tooth pulp afferent terminals, identified by the transganglionic transport of 1% wheatgerm agglutinin conjugated horseradish peroxidase, were investigated with electron microscope. Quantitative ultrastructural analysis was performed on digitizing tablet connected to Macintoshi personal computer (software; NIH Image 1.60, NIH, Bethesda, MD). Labeled boutons could be classified into two types by the shapes of containing vesicles : S bouton, which contained mainly spherical vesicles (Dia. 45-55 nm) and few large dense cored vesicles (Dia, 80-120nm), and LDCV bouton, which contained spherical vesicles as well as large number of large dense cored vesicles. Most of the parameters on the ultrastructural characteristic and synaptic organization of labeled boutons were similar between S and LDCV boutons, except shapes of containing vesicles. Majority of the labeled boutons showed simple synaptic arrangement. The labeled boutons were frequency presynaptic to dendritic spine, and to a lesser extent, dendritic shaft. They rarely synapsed with soma and adjacent proximal dendrite. A small proportion of labeled boutons made synaptic contacts with presynaptic, pleomorphic vesicles containing endings and synaptic triad. Morphometric parameters of labeled boutons including volume and surface area, total apposed area, mitochondrial volume, active zone area, vesicle number and density showed wide variation and these were not significantly different between S and LDCV boutons. The present study revealed characteristic features on ultrastructure and synaptic connection of pulpal afferents which may involved in transmission of oral pain sensation.

  • PDF

Effect of Capsaicin on the Excitatory Amino Acids Neurotranmitters in Medullary Dorsal Horn (Capsaicin이 연수후각의 흥분성 아미노산 전달물질에 미치는 영향)

  • Kwon, Soo-Kyung;Yoon, Soo-Han;Lee, Jong-Heun
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.621-632
    • /
    • 1994
  • This experiment was performed to study the effect of capsaicin on the excitatory amino acids (EAAs) neurotransmitter in medullary dorsal horn and to clarify the relationship between substance P and excitatory amino acids. Horizontal slice of rat medullary dorsal horn was prepared and perfused with modified Krebs-Ringer solution in brain slice chamber. Release of EAAs was induced by veratrine and capsaicin were added to perfusion solution to observe the changes in EAA release. Capsaicin and ruthenium red, capsaicin antagonist, were also systemically injected with 50mg/kg in first day and 100mg/kg in second day for 2 days. Medulla oblongata containing the medullary dorsal horn was isolated, homogenized and centrifused. Spernatant was freeze-dried and EAA was determined by HPLC. Release of glutamate and aspartate was significantly increased by veratrine or capsaicin, but veratrine evoked release of EAAs was blocked by capsaicin in vitro, and injected ruthenium red did not have effect on the contents of EMs in vivo. Systemically injected capsaicin evoked the slight decrease in content of glutamate and aspartate in medullary dorsal horn and this effect of capsaicin was unaffected by ruthenium red.

  • PDF

EFFECTS OF MANDIBULAR NERVE TRANSECTION ON TRIGEMINAL GANGLION NEURONS AND THE ACTIVATION OF MICROGLIAL CELLS IN THE MEDULLARY DORSAL HORN (하악신경 절삭이 삼차신경절 신경세포와 연수후각 소교세포 활성화에 미치는 영향)

  • Lim, Yo-Han;Choie, Mok-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.227-237
    • /
    • 2007
  • Microglial cell activation is known to contribute to neuropathic pain following spinal sensory nerve injuries. In this study, I investigated its mechanisms in the case of trigeminal sensory nerve injuries by which microglial cell and p38 mitogen-activated protein kinase (p38 MAPK) activation in the medullary dorsal horn (MDH) would contribute to the facial pain hypersensitivity following mandibular nerve transection (MNT). And also investigated the changes of trigeminal ganglion neurons and ERK, p38 MAPK manifestations. Activation of microglial cells was monitored at 1, 3, 7, 14, 28 and 60 day using immunohistochemical analyses. Microglial cell activation was primarily observed in the superficial laminae of the MDH. Microglial cell activation was initiated at postoperative 1 day, maximal at 3 day, maintained until 14 day and gradually reduced and returned to the basal level by 60 days after MNT. Pain hypersensitivity was also initiated and attenuated almost in parallel with microglial cell activation pattern. To investigate the contribution of the microglial cell activation to the pain hypersensitivity, minocycline, an inhibitor of microglial cell activation by means of p38 MAPK inhibition, was administered. Minocycline dose-dependently attenuated the development of the pain hypersensitivity in parallel with inhibition of microglial cell and p38 MAPK activation following MNT. Mandibular nerve transection induced the activation of ERK, but did not p38 MAPK in the trigeminal ganglion. These results suggest that microglial cell activation in the MDH and p38 MAPK activation in the hyperactive microglial cells play an important role in the development of facial neuropathic pain following MNT. The results also suggest that ERK activation in the trigeminal ganglion contributes microglial cell activation and facial neuropathic pain.

Immunohistochemical Identification of the Two Forms of Gonadotropin Releasing Hormones (sGnRH, cGnRH-II) in Spotted Sea Bass (Lateolabrax sp.) Brain (면역조직화학법을 이용한 점농어 (Lateolabrax sp.) 뇌에서 두 종류 (sGnRH, cGnRH-II) 의 생식소자극호르몬 분비호르몬의 동정)

  • KIM Jung-Woo;LEE Won-Kyo;YANG Seok-Woo;JEONG Kwan-Sik;CHO Yong-Chul;RHO Yong-Gil;BANG In-Chul;KIM Kwang-Soo;KIM Sang-Koo;YOO Myung-Sik;KWON Hyuk-Bang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.266-270
    • /
    • 1999
  • Two forms of gonadotropin releasing hormone (GnRH) are identified in the brain of adult mature spotted sea bass (Lateolabrax sp.) by immunohistochemical methods. Salmon GnRH immunoreactive (sGnRH-ir) cell bodies were distributed in the olfactory bulb, ventral telencephalon and preoptic region. Immunoreactive fibers were observed in the vicinity of the brain including the olfactory bulbs, the telencephalon, the optic nerve, the optic tectum, the cerebellum, the medulla oblongata and rostral spinal cord. In most cases, these fibers did not form well defined bundles. However, there was a clear continuum of immunoreactive fibers, extending from the olfactory bulbs to the pituitary. cGnRH-II-ir cell bodies were only found in olfactory bulbs. However, the distribution of cGnRH-II-ir fibers was basically similar to that of sGnRH-ir fibers except for the absence of their continuity between the olfactory bulbs and the pituitary. These data suggest that sGnRH and cGnRH-II are endogenous peptides and indicate the presence of multiple neuroendocrine functions in the brain of the spotted sea bass. It seems that sGnRH not only regulates GTH secretion but also functions as a neurotransmitter, whereas cGnRH-II functions only as a neurotransmitter.

  • PDF

Effects of Electrical Stimulation of the Caudal Ventrolateral Medulla on the Activity of Dorsal Horn Neurons of the Spinal Cord in the Cat (복외측 하부연수의 전기자극이 고양이의 척수후각세포의 활성에 미치는 영향)

  • 최윤정;고광호;오우택
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 1993
  • Electrical or chemical stimulation of many areas in the brainstem modulates activity of dorsal horn neurons (DHN). This is known to be mediated by a population of bulbospinal neurons. Yet, little is known about responses of DHNs to stimulation of the caudal ventrolateral medulla (CVLM). Thus, the purpose of the present study is to see if there is any change in activity of DHNs when CVLM is stimulated electrically. Thirty-one DHNs were recorded from dorsal horn of the spinal cord. Fourteen DHNs (45%) were classified as wide dynamic range neurons and 9 (19%) were high threshold cells, and 4 (13%) and 4 (13%) were deep and low threshold neurons, respectively. Among 31 neurons tested for responses to stimulation of CVLM, 21 DHNs (68%) were inhibited by the electrical stimulation of CVLM ($200{\mu}A,\;100{\mu}s$ duration, 100 Hz), and 9 cells (39%) did not show any change in neuronal activity. One neuron was excited by the stimulation. The electrical stimulation of CVLM not only inhibited spontaneous activity of DHNs but also inhibited evoked responses of DHNs to somatic stimulation in the receptive field. These data suggest that CVLM is one of the pain-modulatory areas that control transmission of ascending information of noxious input to the brain from the spinal cord.

  • PDF