• Title/Summary/Keyword: 연수율상수

Search Result 2, Processing Time 0.016 seconds

Effect of droplet length on a burning constant rate of suspended droplet (액적간격이 고정액적의 연소율상수에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presents the results of an experimental investigation on the combustion of single droplets and 1-D droplet arrays of jet A-1 fuel droplets in atmospheric pressure. Experimental results indicate that burning rate constants$({\kappa}_c)$ of jet A-1 fuel droplets were independent of initial droplet size as $0.915{mm}^2$/sec. It was acquired a general relationship expressing the variation of $d^2$ with time for droplet burning For 1-D droplet arrays $(l/d_o$=1.208{\sim}2.922)$/TEX>, the burning rate constant ${\kappa}_c$ decreased with decreasing droplet spacing $l/d_o$ and, The effect on combustion rate constant ${\kappa}_c$ was stronger to second fuel droplet than third fuel droplet with uniform droplet distance

Cumulative damage calculation model for water distribution system with increasing service year (사용연수 증가에 따른 상수관망의 누적피해도 산정 모형)

  • Kim, Hyeong Gi;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.561-569
    • /
    • 2024
  • In this study, a damage estimation model for water distribution system was developed to quantitatively calculate the cumulative damage of water distribution system. And it was applied to real water distribution system to analyze the cumulative damage of water distribution system. To analyze the overall damage rate of the water distribution system, the cumulative damage analysis formula of individual pipes was established. And the aging index that affects the damage rate was analyzed using MCS (Monte Carlo Simulation), and Romanoff's measured data was used to calculate the thickness change due to corrosion. In addition, a cumulative damage estimation model was applied to unit network such as small and medium block network, and the cumulative damage of the unit network for up to 50 years was calculated. From the results, it was found that the cumulative damage rate is increased from 7% to 79% for the water distribution system of Naeduk 1-dong, Cheongju City, as the age of the pipeline is increased from 20 years to 50 years.