본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.
강인한 행동 인식을 하기 위해서는 연속적인 전신 제스처 입력에서부터 의미 있는 부분만을 분할하는 기술이 필요하다. 하지만 의미 없는 행동을 정의하고, 모델링 하기 어렵기 때문에, 연속적인 행동에서 중요한 행동만을 분할한다는 것은 어려운 문제이다. 본 논문에서는 연속적인 전신 행동의 입력으로부터 의미있는 부분을 분할하고, 동시에 인식하는 방법을 제안한다. 의미 없는 행동을 제거하고, 의미 있는 행동만을 적출하기 위해 garbage 모델을 제안한다. 이 garbage 모델에 의해 의미 있는 부분만 HMM의 입력으로 사용되어지며, 학습되어진 HMM 중에서 가장 높은 확률 값을 가지는 모델을 선택하여. 행동으로 인식한다. 제안된 방법은 20명의 3D motion capture data와 Principal Component Analysis를 이용하여 생성된 80개의 행동 데이터를 이용하여 평가하였으며, 의미 있는 행동과, 의미 없는 행동을 포함하는 연속적인 제스처 입력열에 대해 $98.3\%$의 인식률과 $94.8\%$의 적출률을 얻었다.
본 논문에서는 음절수와 모음 열 정보를 이용한 한국어 연속 숫자 인식을 제안하였다. 제안한 연속 숫자 인식기는 첫 단계로 발성된 연속 숫자 음성에서 음절수와 구간을 추출하고, 두 번째 단계로 모음 열을 인식한다. 이와 같이 인식된 모음 열 정보를 이용하여 인식 후보를 줄이게 된다. 인식후보 모델은 조음효과에 효과적으로 대처할 수 있는 CV(Consonant Vowel), VCCV, VC단위 HMM(Hidden Markov Model)을 사용하여 연속 숫자 음성인식기를 구성하였다. 실험결과 제안된 방법이 조음효과를 효과적으로 대처하고 연결 숫자 인식에 유효함을 확인하였다.
본 논문에서는 잡음이 존재하는 환경에 강인한 것으로 알려져 있는 투영 방법을 우 도 측정에 가중 함수와 결합하여 사용하는 방법을 제안하였다. 반연속 HMM을 이용한 고립 단어의 인식 실험 결과, 제안한 방법이 실험에 사용된 잡음의 환경들에서 모두 좋은 성능을 나타내었다. 아울러 병렬 모델 결합 방법을 반연속 HMM에 적용하였는데 이는 코드북의 변 환반으로 쉽게 잡음의 특성을 반영할 수 있다. 가중 투영 우도 측정 방법을 병렬 모델 결합 방법에 적용한 경우에도 우수한 성능을 거둘 수 있었다.
본 논문은 HMM과 연결 숫자음의 후처리를 이용한 음성 다이얼링에 관한 연구이다. HMM(Hidden Markov Model)은 좋은 결과를 보이면서 현재 음성 인식 분야에서 널리 사용되는 알고리즘이다. 그러나, HMM의 학습 방법인 maximum like-lihood estimation은 인식률을 극대화하는 모델의 파라메터 값을 생성하지 못하는 단점이 었다. 이러한 문제점을 보완하기 위하여 Segmental K-means 학습 과정에 후저리를 이용하여 인식 실험을 하였다. 한국어 연속 숫자음은 영어 연속 숫자음과 달리 연음 현상의 영향을 많이 받는다. Level Building 과정에서 연음에 의한 오류를 감소시키기 위해 연음에 의해 발생할 수 있는 단어를 별도의 모델로 추가하였다. 이렇게 추가된 단어 모델들에 대한 몇 가지 규칙을 인식 결과에 적용하여 출력을 다시 조정한다. 본 시 스템은 TMS320C30 프로세서를 내장한 DSP 보드와 IBM PC 상에서 구현되었고, 표준 패턴은 실험실 잡음 환경에서 남성 화자3명을 대상으로 작성하였다. 인식 실험 결과 21종 전화 번호 252개 데이타에 대하여 화자 종속의 경우 $91.6\%$, 회자 독립의 경우 $80.5\%$의 인식률을 나타내었다.
최근, 사람을 인식하는데 있어 걸음걸이가 기존에 사용되어 오던 많은 생체인식을 보완할 만한 것으로 등장하였다. 본 연구는 보행자 실루엣의 동적 특징과 은닉 마르코프 모델(HMM)을 이용한 보행자 인식 방법을 제안한다. 보행자의 보행 모델은 무한 순환 구조의 HMM 두 가지를 사용하였다. 하나는 자기 조직화 지도(SOM)를 벡터 양자화기로 하는 이산 HMM방식이고, 다른 하나는 주성분 분석(PCA) 공간으로 변환된 특징 벡터를 이용하는 연속 HMM방식이다. 실험 결과 HMM이 몇 가지 변수의 조정에 대해 일관성 있는 성능 변화를 보이며 최고 88.1%의 인식률을 기록하였다. 또한 기존 연구 결과와 비교하여 볼 때 특징과 제안 구조의 모델은 보행자 인식에 충분한 적용 가능성이 있으며, 나아가 걸음걸이가 생체 인식으로 이용되기에 좋은 지표가 될 수 있을 것으로 판단된다.
본 연구에서는 finite impulse response (FIR) 필터에 의해 인식기의 입력 특징벡터가 필터링되는 경우에 hidden Markov model (HMM) 파라미터를 적응시키는 새로운 기법을 제안한다. 제안한 적응 기법은 필터링에 의해 변환된 특징벡터에 대해 HMM 파라미터를 다시 학습시킬 필요가 없으며 주어진 FIR필터 계수만을 사용하여 HMM 파라미터를 적응시킬 수 있다. 개발된 FIR필터링에 대한 HMM 파라미터 적응 기법은 연속 숫자음 인식 실험에서 재학습 방법과 비교 실험한 결과 low-pass 필터의 경우에 재학습 방법과 비슷한 인식 성능을 나타내었다.
본 논문은 온라인 문자 인식을 연속 밀도 HMM의 구조의 최적화 문제를 다룬다. 최적이란 최소한의 모델 파라미터를 사용하여 최소한의 오류를 허용하는 것이라고 정의할 수 있다. 본 연구에서는 HMM 구조의 최적화를 위해 Bayesian 모델 선택 방법론을 사용한다. 먼저 잘 알려진 BIC(Bayesian Information Criterion)을 적용해보고, 그것을 HMM의 복잡한 구조에 적합하도록 본 논문에서 제안한 HBIC(HMM-Oriented BIC)와 비교해본다. BIC는 모델의 사전 확률 분포를 추정하지 않고 다변량 정규분포라고 가정하는데 비해 HBIC는 모델의 각 파라미터로부터 사전 확률을 추정한 후 그것들을 사용함으로써 더 좋은 결과를 얻도록 한다. 실험 결과 BIC와 HBIC 둘 다 기존 방법보다 모델의 파라미터 수를 현저히 감소시킴을 확인했고, HBIC가 BIC에 비해 더 적은 수의 파라미터를 사용해도 비슷한 인식률을 얻을 수 있었다.
In this paper, we propose the HMM with the MIN module. Because initial and re-estimated variance vectors are important elements for performance in HMM recognition systems, we propose a method which compensates for the mismatched statistical feature of training and test data. The MIN module function is a differentiable function similar to the sigmoid function. Unlike a continuous density function, it does not include variance vectors of the data set. The proposed hybrid HMM/MIN module is a unified network in which the observation probability in the HMM is replaced by the MIN module neural network. The parameters in the unified network are re-estimated by the gradient descent method for the Maximum Likelihood (ML) criterion. In estimating parameters, the variance vector is not estimated because there is no variance element in the MIN module function. The experiment was performed to compare the performance of the proposed HMM and the conventional HMM. The experiment measured an isolated number for speaker independent recognition.
연속음성 인식 시스템 구성을 위한 HMM WORD SPOTTING 기법을 검토하였다. 실험에 사용한 HMM WORD SPOTTING 기법은 O(n)DP 기법와 OPDP 법이다. 인식시스템은 파라메터로 멜켑스트럼 만을 사용한 경우와 동적 파라메터인 희귀계수를 결합한 경우의 2종류이며, 인식 알고리즘은 O(n)DP 법과 유한상태 오토마타에 의해 구문제어를 실?나 ONE PASS DP 법으로 나눌 수 있다. 또한 인식 단위는 음절과 단어가 혼합된 형태이고 학습은 모두 음절단위로 실시하였으며 연속음성 25문장에 대하여 O(n)DP법과 OPDP법의 인식결과를 비교하여 연속음성 인식에 구문제어 효과를 검증하였다. 실험 결과 평균 인식률이 O(n)DP 의 경우 각각 90.6%, 90.9%, OPDP 의 경우 각각 98.4%, 98.6%로 유한 상태 오토마타에 의한 구문제어를 이용한 평균 7.5%의 인식률이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.