• 제목/요약/키워드: 연속 HMM

검색결과 150건 처리시간 0.025초

이산 지속시간제어 연속분포 HMM을 이용한 연속 음성 인식 (Korean Continuous Speech Recognition Using Discrete Duration Control Continuous HMM)

  • 이종진;김수훈;허강인
    • 한국음향학회지
    • /
    • 제14권1호
    • /
    • pp.81-89
    • /
    • 1995
  • 본 논문에서는 연속분포 HMM에 이산 지속시간제어와 회귀계수를 파라메터로 추가한 이산 지속시간제어 연속분포 HMM 모델을 이용하여 한국어 연속음성 인식 시스템을 구성하였다. 또한 25 문장의 로보트 제어명령문을 유한상태 오토마타에 의해 구문제어를 실시한 One Pass DP법으로 인식 실험을 실시하였다. 4연 숫자음에 대한 인식 실험에서 이산 지속시간 제어와 회귀 계수를 포함한 경우 평균 $93.8\%$의 인식율을, 포함하지 않은 경우 $80.7\%$의 인식율을 얻었다. 로보트 제어 명령문의 인식에서는 구문제어를 실시하지 않은 경우 평균 $90.9\%$, 유한 상태 오토마타에 의한 구문제어를 이용한 경우 평균 $98.4\%$$7.5\%$의 인식율이 향상되었다.

  • PDF

HMM에 기반한 연속음성인식에서의 형태소 그래프 생성 (Morpheme Graph Generation with HMM based Continuous Speech Recognition)

  • 최준기;이근배;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.500-504
    • /
    • 1997
  • 본 논문에서는 형태소 그래프를 정의하고 이를 한국어 연속 음성 인식의 결과로서 사용함과 동시에 한국어의 자연어 처리를 위한 지식 표현 방법으로 사용한다. 또한 형태소 그래프를 연속 음성 인식과정에서 효율적으로 생성하는 알고리즘으로서 Tree-Trellis 탐색 알고리즘을 소개한다. 한국어 연속 음성 인식기는 HMM 인식기를 사용하며 탐색 알고리즘 또한 HMM 음소 인식기의 사용을 전제로 한다. 실험 DB로는 한국과학기술원 통신연구실에서 제작한 3000 단어급의 무역상담관련 DB를 사용하였다.

  • PDF

다양한 연속밀도 함수를 갖는 HMM에 대한 우리말 음성인식에 관한 연구 (The Study of Korean Speech Recognition for Various Continue HMM)

  • 우인성;신좌철;강흥순;김석동
    • 전기전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.89-94
    • /
    • 2007
  • 본 논문은 연속 밀도 함수를 갖는 HMM별 한국어 연속 음성인식에 관한 연구이다. 여기서 우리는 밀도 함수가 2개에서 44개까지 갖는 연속 HMM모델에서 가장 효율적인 연속 음성인식을 위한 방법을 제시한다. 음성 모델은 36개로 구성한 기본음소를 사용한 CI-Model과 3,000개로 구성한 확장음소를 사용한 CD-Model을 사용하였고, 언어 모델은 N-gram을 이용하여 처리하였다. 이 방법을 사용하여 500개의 문장과 6,486개의 단어에 대하여 화자 독립으로 CI Model에서 최고 94.4%의 단어인식률과 64.6%의 문장인식률을 얻었고, CD Model에서는98.2%의 단어인식률과 73.6%의 문장인식률을 안정적으로 얻었다.

  • PDF

Discriminant 학습을 이용한 전화 숫자음 인식 (Telephone Digit Speech Recognition using Discriminant Learning)

  • 한문성;최완수;권현직
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.16-20
    • /
    • 2000
  • 대부분의 음성인식 시스템이 확률 모델을 기반으로 한 HMM 방법을 가장 많이 사용하고 있다. 한국어 고립 전화 숫자음 인식인 경우에 만약 충분한 학습 데이터가 주어지면 HMM 방법을 사용해도 높은 인식률을 얻는다 그러나 한국어 연속 전화 숫자음 인식인 경우에 비슷하게 발음되는 전화 숫자음들에 대해서는 HMM방법이 한계를 가지고 있다. 본 논문에서는 한국어 연속 전화 숫자음 인식에서 HMM 방법의 한계를 극복하기 위해 discriminant 학습 방법을 제시한다. 실험결과는 우리가 제시한 discriminant 학습 방법이 비슷하게 발음되는 전화 숫자음들에 대해서 높은 인식률을 갖는 것을 보여준다.

  • PDF

모음열과 VCCV단위 HMM을 이용한 연속 숫자 음성인식 (A Continuous Digits Speech Recognition Applied Vowel Sequence and VCCV Unit HMM)

  • 윤재선;정광우;홍광석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.25-28
    • /
    • 2001
  • 본 논문에서는 조음 효과에 대처할 수 있는 반음절, 반음절 + 반음절 단위 HMM과 모음열 정보를 적용하여 연속 숫자 음성인식을 구현하였다. 모음열 정보를 적용하여 기준모델을 모음이 포함된 HMM단위로만 구성한 시스템과 모든 기준모델과 비교하는 시스템과 성능을 비교하였다. 인식실험결과 인식률의 향상으로 제안된 방법이 효율적임을 확인하였다.

  • PDF

SPHINX : Hidden Markov Model 기반 음성인식 시스템

  • 김명원;이영직;전인흥
    • 전자통신동향분석
    • /
    • 제5권2호
    • /
    • pp.63-77
    • /
    • 1990
  • HMM(Hidden Markov Model)은 음성을 기술하는데 적합한 model이다. 본 고는 최근 CMU에서 개발한 HMM에 기반을 둔 화자독립, 연속음성 system인 SPIHNX에 대하여 기술한다. SPHINX는 단순한 음소의 HMM model을 적용한 baseline SPHINX로부터 시작하여 새로운 지식의 추가 및 음성단위의 조정 등을 통하여 지속적으로 그 성능이 개선되어 왔다. SPHINX의 최종 version은 어휘 약 1000단어 정도의 재원 관리에 관한 질문 형태의 문장을 인식하는데 96%의 높은 인식율을 보인다. SPHINX는 가장 발전된 음성인식 시스템의 하나이며 이는 화자독립, 대용량어휘의 연속음성 인식 시스템의 실현 가능성을 제시한다.

반음절 단위 HMM을 이용한 연속 숫자 음성인식 (Continuous Digits Speech Recognition using Semisyllable Unit HMM)

  • 윤재선;홍광석
    • 한국음향학회지
    • /
    • 제17권5호
    • /
    • pp.73-78
    • /
    • 1998
  • 본 논문에서는 조음 효과에 대처할 수 있는 새로운 음성인식 단위로 반음절, 반음절 +반음절 단위 HMM을 제안하여 연속 숫자 음성인식을 하였다. 반음절 단위는 무음과 안정 구간으로, 반음절+반음절 단위는 안정, 천이, 안정구간으로 구성되어 있고, 음성인식 단위 분 할시 비교적 스펙트럼의 변화가 안정한 모음구간에서 분할하므로 분할 위치가 약간 변하여 도 인식성능에는 큰 영향을 주지 않게 된다. 또한, 제안된 반음절, 반음절+반음절 인식단위 는 그 패턴 안에 다음 숫자열의 정보를 포함하고 있기 때문에 모든 HMM 패턴들과 비교하 는 것이 아니라, 다음 숫자열의 정보를 포함한 HMM 패턴들과 비교한다. 인식실험결과 제 안된 방법이 효율적임을 확인하였다.

  • PDF

연속분포 HMM에 의한 실시간 Word Spotting 에 관한 연구 (A Study on the Real-time Word Spotting by Continuous density HMM)

  • 서상원
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.92-95
    • /
    • 1995
  • 연속분포 HMM을 사용한 실시간 로봇 암 제어 시스템에 대해 기술하고 있다. 본 시스템은 자연스러운 문장의 로봇 암 제어 명령 발성을 받아 핵심단어 인식의 framework을 통한 명령 인식 및 로봇 제어를 구현하고 있다. 로봇 몸체의 부분, 방향, 각도, 동작명령들에 대해 각기 우향 HMM, 이외의 비 핵심어들에 대해서는 이들을 한데 모아 ergodic형 상태천이를 모델링하는 garbage HMM을 형성했는데, 조사, 감탄사 등을 따로 모은 garbage 모델과, silence 및 배경 잡음에 대한 garbage 모델을 형성, 학습 및 인식에 포함시켜 연결단어 인식을 수행함으로써 핵심단어 인식의 효과를 얻었다. 이때 핵심단어들의 사용에 있어 간단한 문법적 제약을 가정하였다. 남성화자 35명을 대상으로 30개 문형에 대해 데이터 수집용 개념적 문장을 구성하여 음성 데이터를 수집하였다. 학습 화자에 대한 제어 명령 인식률은 95% 이상을 나타내고 있으며, 비 학습화자에 대한 인식율은 90% 이상이다. 또한 학습된 단어외의 비 핵심단어들의 사용에 대해서도 긍정적인 인식 성능을 보였다.

  • PDF

시간동기형 Viterbi 알고리즘과 HMM에 기반한 음성의 자동 세그멘테이션 (Auto-Segmentation of Unsegmented Speech based on HMM and Time-Synchronous Viterbi Algorithm)

  • 오세진;황철준;김범국;정호열;정현열
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.592-594
    • /
    • 2001
  • 본 연구에서는 음성인식에 있어서 음향모델의 고정도화를 위해 통계적 방법인 HMM과 시간동기형 Viterbi 알고리즘을 기반으로 한 세그멘트되지 않은 음성의 자동 세그멘테이션에 관한 연구를 수행하였다. 본 연구에서는 소량의 세그멘트된 음성에 대해 연속분포형 HMM 기본모델을 작성한 후 이를 표준패턴으로 사용하고, 세그멘트되지 않은 입력음성의 특징 피라미터에 대해 시간동기형 Viterbi 알고리즘의 프레임마다 최대가 되는 지점을 최적경계로 설정하고, 앞에서 구현 최적 경계 정보와 언어학적 지식인 발음사전 정보를 이용하여 음성을 세그멘테이션 하는 것이다. 본 연구와의 비교를 위해 HTK를 이용하여 위와 동일한 과정을 수행하였다. 이렇게 구한 음성의 세그멘테이션 정보를 이용하여 연속분포형 HMM 기본모델과 HTK의 CHMM 기본모델을 각각 작성한 후, 국어공학센터(KLE) 단어 데이터에 대해 단어인식 성능을 평가하였다. 실험결과, KLE 452 남성과 여성에 대해, 본 연구실 인식 시스템은 화자독립 단어인식률 89.4%, 85.1%, HTK의 화자독립 단어인식률 85.1%, 81.9%를 각각 얻었다.

  • PDF

필기 데이터 인식을 위한 이산 HMM과 연속 확률밀도 HMM에서의 HMM구조 최적화 기준 분석 (Analysis of HMM Topology Criteria on Discrete HMM and Continuous-Density HMM for Handwriting Recognition)

  • 박미나;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.853-855
    • /
    • 2005
  • 은닉 마르코프(HMM)의 HMM의 구조 최적을 위한 모델 선택 방법에 많은 방법들이 연구되어지고 있다. HMM의 구조를 어떻게 최적으로 정해야 하는 가에 대해 HMM의 구조를 체계적인 방법으로 정함과 동시에 변별력의 단점을 개선 할 수 있는 방법으로 Anti-likelihood(ALC1)를 제안하였고 이를 모델 선택 기준인 BIC와의 결합(ALC2)하여 필기 데이터에 대해 실험한 결과 기존의 방법보다 파라미터의 수는 감소되고 인식률이 향상됨을 알 수 있었다. 이를 Discrete HMM에도 적용하여 제안된 ALC2가 HMM 구조를 최적화하는 모델 선택 기준임을 Continuous-Density HMM과 비교하여 실험 검증 한다.

  • PDF