• Title/Summary/Keyword: 연속 투시촬영

Search Result 4, Processing Time 0.021 seconds

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

Water Level Measurement Method Based on Temporal Variation of Water Surface Pixel Arrangement in Successive Images (수면 영상의 시간적 픽셀농도변화를 이용한 수위계측방법)

  • Kwon, Sung-Ill;Kim, Won;Lee, Chan-Joo;Kim, Seung-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.781-787
    • /
    • 2010
  • A new method for water level measurement method and its verification results are described. In this method, water surface in motion can be detected by temporal variation of pixel arrangement in successive digital images including the boundary between the staff gauge and the water surface. Laboratory and field tests were conducted for the two cases in which the staff gauge was contaminated by dirt or transparent due to clear water. The result shows water level can be accurately measure by this method for these two cases. It is expected that the accuracy of previous image stage gauge will be improved by the new method.

Development of the 3D Rail Profile Reconstruction Method Improving the Measurement Accuracy of Railway Abrasion (레일 마모도의 측정 정밀도 향상을 위한 3차원 레일 프로파일 재구성 기법 개발)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.533-539
    • /
    • 2010
  • The The contactless railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be matched with the cross section of rail, exactly. But, the conventional railway abrasion measurement system is required the post image processing with a camera model and a perspective transform for the exact mapping between the cross section of rail and the coordinate data extracted from a line laser region or the raw image obtained from a camera because the image captured from the camera has an oblique viewpoint. So, the measured rail profile data had limits to the measurement accuracy because of a discontinuity point. In this Paper, we propose the 3D rail profile reconstruction method to increase the accuracy of the railway abrasion measurement system applying the modified camera model and perspective transform to the image obtained from the bidirectional rail.

  • PDF

Development of Biodegradable Polymeric Membrane for Interventional Procedure: Preliminary Study (인터벤션 시술을 위한 생분해성 고분자막의 개발 : 예비연구)

  • Bang, Jung-Wan;Hyun, Chang-Yong;Kim, Tae-Hyung;So, Woon-Young;Kim, Jin-Tae;Kim, Sang-Sub;Jung, Hee Dong;Heo, Yeong Cheol
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • This study was to evaluate clinical feasibility of biodegradable polymeric membrane for interventional procedure in preliminary study. Bio-degradable polymetric membrane was produced into a solution by mixing hyaluronic acid powder with NaOH solution in a heating mantle. Three different concentrations of contrast media (10, 20, and 30 vol%) were added to the produced soluble powder, and vertical agitation was performed for 12 hours at a speed of 100 to 200 rpm at a room temperature. It was freeze dried for 24 hours at a temperature $80^{\circ}C$. Pressure on the freeze dried sample was exerted by a hydraulic press in order to form the freeze dried sample into a membrane. The membrane produced with varying contrast medium concentration was visually examined by a scanning electron microscope and radiographically inspected. Under the visual examination, the higher the concentration of contrast medium, the rougher the surface. Radiographic transparency was similar under all conditions of fluoroscopic radiography, simple radiography, and serial radiography. In conclusion, this preliminary study verified that bio-degradable membrane produced with hyaluronic acid was a material with clinical usability.