Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.49-52
/
2004
본 논문은 연속 밀도 함수를 갖는 HMM별 한국어 연속 음성 인식에 관한 연구이다. 여기서 우리는 밀도 함수가 2개에서 44개까지 갖는 연속 HMM모델에서 가장 효율적인 연속 음성 인식을 위한 방법을 제시한다. 음성 모델은 36개로 구성한 기본음소를 사용한 CI-Model과 3,000개로 구성한 확장음소를 사용한 CD-Model을 사용하였고, 언어 모델은 N-gram을 이용하여 처리하였다. 이 방법을 사용하여 500개의 문장과 6,486 개의 단어에 대하여 화자 독립으로 CI Model에서 최고 $94.4\%$의 단어 인식률과 $64.6\%$의 문장 인식률을 얻었고, CD Model에서는 $98.2\%$의 단어 인식률과 $73.6\%$의 문장인식률을 안정적으로 얻었다.
The voice recognition has been made continuously. Now, this technology could support even natural language beyond recognition of isolated words. Interests for the voice recognition was boosting after the Siri, I-phone based voice recognition software, was presented in 2010. There are some occasions implemented voice enabled services using Korean voice recognition softwares, but their accuracy isn't accurate enough, because of background noise and lack of control on voice related features. In this paper, we propose a sort of multi-purpose preprocessor to improve this situation. This supports Keyword spotting in the continuous speech in addition to noise filtering function. This should be independent of any voice recognition software and it can extend its functionality to support continuous speech by additionally identifying the pre-predicate and the post-predicate in relative to the spotted keyword. We get validation about noise filter effectiveness, keyword recognition rate, continuous speech recognition rate by experiments.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.324-326
/
2000
본 논문에서는 항공편 예약이라는 제한 영역에서의 연속음성인식 시스템을 위한 후처리 본 논문에서는 항공편 예약이라는 제한 영역에서의 연속음성인식 시스템을 위한 후처리 방안을 제시한다. 제안하는 후처리 방안은 200 문장의 항공편 예약 텍스트 데이터를 이용하여 문형 정보를 추출한 뒤 특정 문형별로 분류하였다. 분류된 문형과 음성인식 후의 문장을 비교하여 가장 유사한 문형을 추론한다. 추론한 특정 문형에서 나올 수 있는 형태소를 형태소들간의 N-gram 정보가 수록된 데이터베이스를 이용하여 형태소를 수정하고 보완한 결과를 최종 문장으로 출력한다.
연속적인 음성 인식 결과는 띄어쓰기를 하지 않은 연속 음절 문장들로 이루어져 있다. 본 논문은 음성 인식 후처리 단계에서 연속 음절 문장을 조사/어미 사전을 이용한 어절 생성 과정과 형태소 분석기를 이용하여 어절을 생성한 후 키워드를 추출한다. 실험 결과, 어절 생성기만 적용한 방식보다 제안된 알고리즘의 인식률이 향상되는 것을 확인하였다.
HMM(Hidden Markov Model)은 음성을 기술하는데 적합한 model이다. 본 고는 최근 CMU에서 개발한 HMM에 기반을 둔 화자독립, 연속음성 system인 SPIHNX에 대하여 기술한다. SPHINX는 단순한 음소의 HMM model을 적용한 baseline SPHINX로부터 시작하여 새로운 지식의 추가 및 음성단위의 조정 등을 통하여 지속적으로 그 성능이 개선되어 왔다. SPHINX의 최종 version은 어휘 약 1000단어 정도의 재원 관리에 관한 질문 형태의 문장을 인식하는데 96%의 높은 인식율을 보인다. SPHINX는 가장 발전된 음성인식 시스템의 하나이며 이는 화자독립, 대용량어휘의 연속음성 인식 시스템의 실현 가능성을 제시한다.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06c
/
pp.373-377
/
1994
연속음성 인식 시스템 구성을 위한 HMM WORD SPOTTING 기법을 검토하였다. 실험에 사용한 HMM WORD SPOTTING 기법은 O(n)DP 기법와 OPDP 법이다. 인식시스템은 파라메터로 멜켑스트럼 만을 사용한 경우와 동적 파라메터인 희귀계수를 결합한 경우의 2종류이며, 인식 알고리즘은 O(n)DP 법과 유한상태 오토마타에 의해 구문제어를 실?나 ONE PASS DP 법으로 나눌 수 있다. 또한 인식 단위는 음절과 단어가 혼합된 형태이고 학습은 모두 음절단위로 실시하였으며 연속음성 25문장에 대하여 O(n)DP법과 OPDP법의 인식결과를 비교하여 연속음성 인식에 구문제어 효과를 검증하였다. 실험 결과 평균 인식률이 O(n)DP 의 경우 각각 90.6%, 90.9%, OPDP 의 경우 각각 98.4%, 98.6%로 유한 상태 오토마타에 의한 구문제어를 이용한 평균 7.5%의 인식률이 향상되었다.
본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.
Proceedings of the Acoustical Society of Korea Conference
/
1993.06a
/
pp.125-127
/
1993
오디오 혹은 비디오화의, 방송 고품질전화 등의 음성신호의 전송을 위해 마련된 CCITT Recommendation G.722에 의거 Codec을 구성하고 이를 통과한 연속음성을 CMU의 불특정 화자 연속음성인식 시스템인 SPHINX에 입력하여 인식률을 조사 한 후 CODING전의 인식결과와 비교하였다. 이때 CODEC은 크게 네 부분(Trans Quarature Mirror Filter, Encoder, Decoder, Receive QMF)으로 구성하고 입력음성 데이터는 150화자에 의한 1018문장을 훈련용으로, 140문장을 테스트용으로 하였을 때의 단어 인식률을 인식률로 하였다. 또 이때 특징벡터로는 12차 Melcepstrum 계수를 사용하였다. 인식결과 코딩전(close talk Mic를 이용하여 직접입력)의 단어 인식률이 86.7%인데 비해 코딩후의 인식률은 85.6%로 나타나 약 1%의 인식률 저하를 가져와 코딩으로 인한 Error에 비해 비교적 양호한 결과를 얻을 수 있었다. 인식률 저하의 원인으로서는 코딩시의 BER(Bit Error Rate)에 의한 것으로 생각된다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.91-94
/
1998
우리만은 영어와는 달리 단어를 공백으로만 구분할 수 없다. 그러므로 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. N-gram의 언어 모델을 우리말 문장에 적용하기 위해 하나의 문장을 한 단어로 구성하여 처리하였다. 우리의 인식시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 음성을 대상으로 인식률을 계산하였다. 단어의 종류는 452개이며 한명이 이 단어들을 2번씩 발음하고 총70명이 발음한 총 63,280개의 단어에 대하여 92.8%의 인식률을 얻었다. 일간지 사설로부터 추출한 단어를 대상으로 발음 사전을 10K 크기로 만들었다. 음성 모델은 uniphone을 사용하였다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.365-368
/
1998
본 연구는 음소 단위의 CHMM(Continuous Hidden Markov Model)을 이용한 Voice Dialing System을 위한 연속 음성인식에 관한 내용이다. 연구실 환경에서 음성으로 전화를 걸기 위하여 전국 지역명과 연속 숫자음 인식을 수행하였다. ETRI 445 데이터를 사용하여 초기의 모델은 ML(Maximum Likelihood) 추정법을 이용하여 작성하였고 적응화를 위해 최대 사후 확률 추정법을 사용하였다. 음성으로 다이얼링을 수행하기 위하여 문맥자유문법을 이용하여 제한적이나마 대화체문장으로 수행할 수 있도록 하였다. 그리하여 숫자음에 대하여 5인의 화자에 대하여 4연속 숫자음에 대하여 96%의 인식률을 보이고 있으며 7연속 숫자음에 대하여도 약 91%의 결과를 보여주고 있다. 문장으로도 음성 다이얼링을 수행하였을 경우 문장내에 단어와 숫자음에 대하여 약 80%의 인식률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.