• Title/Summary/Keyword: 연속후프

Search Result 4, Processing Time 0.02 seconds

A Statistical Approach for the Size Effect on the Strength of CFRP (탄소섬유 복합재의 강도 크기효과에 관한 통계적 접근)

  • Hwang, Tae-Kyeong;Kim, Hyung-Kun;Kim, Seong-Eun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.472-476
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to verify the size effect on the fiber strength of filament wound pressure vessel. As a test method, a series of fully scaled hoop ring tests with filament wound carbon fiber-epoxy has been conducted. Test results showed remarkable size effect on fiber strength. And, as an analytical method, the WWLM(Weibull weakest link model) and SMFM(sequential multi-step failure model) were considered and compared to hoop ring test data. The analysis results showed significantly lower fiber strength value than that of test data. Through the modification of length size effect, modified SMFM is suggested. The fiber strengths from modified SMFM showed good agreement with test data.

  • PDF

Size effect on tensile strength of filament wound CFRP composites (필라멘트 와인딩 탄소섬유 복합재의 인장강도 크기 효과)

  • Hwang, T.K.;Doh, Y.D.;Kim, H.G.
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to show the size effect on the fiber strength of filament would pressure vessel. First, a series of fully scaled hoop ring tests with filament would carbon-epoxy were conducted, which exhibited a remarkable size effect on the fiber strength. Next, the failure analyses using WWLM(Weibull Weakest Link Model) and the SMFM(Sequential Multi-step Failure Model) were performed and compared to the hoop ring test data, as well as to unidirectional specimens test data from the literature. It was found that the analysis results significantly underestimated the fiber strengths compared to the test data. In this study, a modified SMFM was proposed through the modification of the length size effect. The fiber strengths from modified SMFM analysis showed good agreement with the test data.

Development of Continuous Rectangular Spiral Hoop Bar Construction for RC Beam and Column (연속후프를 이용한 철근콘크리트 보, 기둥 철근배근 공법 개발)

  • Park, Sung-Woo;Kwak, Chang-Sik;Jin, Jong-Min;Park, Hong-Geun;Kang, Su-Min;Kim, Hyo-rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.171-172
    • /
    • 2012
  • In this study the continuous rectangular spiral hoop is used for saving cost and time, solving manpower shortage, and the quality of structures. Generally the use of continuous spiral reinforcement in reinforced concrete elements improve the strength and the ductility of the concrete. Savings in cost and time is demonstrated with the continuous rectangular spiral hoop through the mock up test of beam and column elements. In case of a 4m column element the time of rebar work decreases up to 40% compared with traditional hoop, and in case of a 8m beam the time also decreases 40%. This study present the construction method and details.

  • PDF

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.