• Title/Summary/Keyword: 연속파형 Nd:YAG 레이저

Search Result 27, Processing Time 0.023 seconds

Influence of process Parameters on the Surface Roughness and the Striation Formation of the Cut Section for the Case of Cutting of CSP 1N Sheet using High Power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP1N 냉연강판 절단시 공정변수의 절단면 특성에 미치는 영향)

  • Ahn Dong-Gyu;Kim Min-Su;Park Hyung-Jun;Yoo Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.30-38
    • /
    • 2006
  • Laser cutting technology is one of flexible rapid manufacturing technologies with various advantageous including a high cutting speed, manufacturing of parts with a complex shape and others. The quality of the cut part and the optimum cutting conditions are highly dependent on the combination of the process parameters. The objective of this research works is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the surface roughness and the striation formation of the cut section for the case of cutting of CSP 1N sheet using high power Nd:YAG Laser with a continuous wave (CW). In order to find the relationship between process parameters and the surface roughness and the striation formation of the cut section, several experiments are carried out. Through the investigation of the empirical results, it has been shown that the surface roughness is highly related to the striation formation, including the frequency and angle of the striation, of the cut section. From the results of experiments, an optimum cutting speed for each cutting condition has been obtained to improve both the quality of the cut surface and the cutting efficiency.

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

A Comparison study on cross and coaxial nozzle characteristic by using CW Nd:YAG Laser (연속파형 Nd:YAG 레이저 용접에서 크로스노즐과 동축노즐 특성 비교)

  • Lee, Ka Ram;Hwang, Chan Youn;Park, Eun Kyeong;Yoo, Young Tae
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 2013
  • As parts are becoming more complex and smaller with the development of new materials, high-quality laser precision processing is getting the limelight. Laser enables quick processing and less deformation of materials. It also enables welding with diverse materials. In this study, the pole rod and tap for the secondary battery were laser-welded using cross and coaxial nozzles. The results of the comparative analysis of cross and coaxial nozzles according to the processing parameters showed that the coaxial nozzle had more sensitive welding characteristic to the nozzle position or pressure than the cross nozzle. This indicated that the processing parameters should be carefully determined for the welding with the coaxial nozzle. The pole rod and tap were welded together in a form of T joint to improve the output of the secondary battery, and the cross nozzle had a better welding characteristic than the coaxial nozzle.

  • PDF

A Study on the Welding Characteristics of Hastelloy C-276 using a Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 Hastelloy C-276의 용접특성에 관한 연구)

  • Na, Gee-Dae;Yoo, Young-Tae;Shin, Ho-Jun;Oh, Yong-Seok
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.49-59
    • /
    • 2008
  • Hastelloy C-276, corrosion resistant alloy at high temperature, is used in chemical plant and power generation industry. In this study, process parameter of laser welding for welding property in Hastelloy C-276 using a continuous wave Nd:YAG laser was studied. As the result of experiment, laser welding did not show segregation or crack at heat affected zone compared to conventional GTWA welding. The melting zone showed cell dendritic structure along with welding line. In addition, planer front solidification is occurred from welding structure, and it was progressed to cellular solidification. Optimal process parameter for butt welding was 1.2kW and 2.0 m/min for laser power and welding speed, respectively. While heat input, output density, tensile stress, and longitudinal strain was $441.98{\times}103$ J/cm2, $29.553{\times}103$ W/cm2, 768 MPa, and 0.689, respectively. Lap welding of the same material showed greater discrepancy in tensile property during 1 line and 2 line welding. For 1 line welding, tensile stress was about 320 MPa, and 2 line showed slightly larger tensile stress. However, strain was decreased by 20%. From this result, lap welding of the same material, Hastelloy C-276, with 2 line welding is considered to be more effective process than 1 line welding with consideration of mechanical property.

Characteristics of CW Nd:YAG Laser Lap Welds of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파형 Nd:YAG 레이저 겹치기용접 특성)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.18-27
    • /
    • 2007
  • Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, ease of automation, single-pass thick section capability, enhanced design flexibility, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as the welding fur metals with CW Nd:YAG lasers. The bead-on-plate and Lap welding experiments are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the welding quality of the cross section, tensile stress behavior and the hardness of the welded part are investigated in comparison of the Nickel coated and Nickel uncoated S45C steel. As a result of experiment, nickel coated S45C Steel showed more even weld zone than Nickel uncoated counterpart upon lap welding. Also, it showed relatively small amount of internal defects and spatter, and Nickel coated S45C showed better weldability than Nickel uncoated S45C steel. The optimum welding process upon lap welding of Nickel coated S45C steel is when each laser power is 1900W; focal positions is -1mm; welding speed is $0.9{\sim}1.0m/min$. The heat input was $4.178{\sim}4.36{\times}103J/cm^2$.

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41 (저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술)

  • Lee, Ka Ram;Hwang, Chan Youn;Yang, Yun Seok;Park, Eun Kyeong;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.