• Title/Summary/Keyword: 연속질의

Search Result 343, Processing Time 0.025 seconds

A Efficient Method of Extracting Split Points for Continuous k Nearest Neighbor Search Without Order (무순위 연속 k 최근접 객체 탐색을 위한 효율적인 분할점 추출기법)

  • Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.927-930
    • /
    • 2010
  • Recently, continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used in the LBS(Location Based Service) and ITS(Intelligent Transportation System) applications. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. This paper proposes a new method to search nearest POIs(Point Of Interest) for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results. There is no order between the POIs. The analysis show that the proposed method outperforms the existing methods.

  • PDF

Finding Correlated Keyword b Analyzing User's Implicit Feedback (사용자 선호도 분석을 통한 검색어 조합 추출)

  • Chul-Woo Shim;Eun Ju Lee;Ung-Mo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.229-232
    • /
    • 2008
  • 웹 정보량이 급속히 늘어나면서 원하는 정보를 효율적으로 찾는 검색 기술의 중요성이 커지고 있다. 검색의 정확성을 높이기 위해서는 검색 질의어와 함께 사용자의 환경, 검색 만족도와 같은 다양한 정보가 필요하다. 사용자의 명시적 피드백을 요구하는 것은 거부감을 줄 수 있으므로 사용자의 잠재적 피드백과 연관 검색어 분석을 통해 검색 질의어를 확장하는 연구가 이뤄지고 있다. 그러나 이러한 검색어 확장과 검색 정확성 사이의 상관관계에 대한 분석이 없어 연관 검색어를 정량적으로 평가할 수 없었다. 본 논문에서는 사용자가 검색 질의어를 변경하면서 검색을 반복하는 과정을 사용자의 잠재적 피드백의 하나로 보고 사용자 만족도를 반영하는 페이지 방문 시간과 함께 분석하여 연속적으로 입력된 검색어가 검색 결과 순위와 사용자 만족도에 미치는 영향을 분석하는 방법을 제안하였다. 마우스 클릭 정보 분석을 통하여 사용자의 검색 만족도를 정량화하였고 특정 주제어에서 관련 검색어가 확장되어 가는 과정은 트리 구조로 표현하였다. 이를 통해 하나의 주제어와 관련해 연속적으로 입력된 검색어 집합으로부터 연관검색어를 추출하고 검색 결과의 정확성을 높일 수 있으며 제안된 트리 구조를 다양한 방향으로 분석하여 검색어, 검색 결과, 사용자 만족도, 배경 지식 등 단순 검색어 분석에서는 나타나지 않는 다양한 정보를 얻을 수 있다.

A Study on Indexing Moving Objects using the 3D R-tree (3차원 R-트리를 이용한 이동체 색인에 관한 연구)

  • Jon, Bong-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.65-75
    • /
    • 2005
  • Moving-objects databases should efficiently support database queries that refer to the trajectories and positions of continuously moving objects. To improve the performance of these queries. an efficient indexing scheme for continuously moving objects is required. To my knowledge, range queries on current positions cannot be handled by the 3D R-tree and the TB-tree. In order to handle range queries on current and past positions. I modified the original 3D R-tree to keep the now tags. Most of spatio-temporal index structures suffer from the fact that they cannot efficiently process range queries past positions of moving objects. To address this issue. we propose an access method, called the Tagged Adaptive 3DR-tree (or just TA3DR-tree), which is based on the original 3D R-tree method. The results of our extensive experiments show that the Tagged Adaptive 3DR-tree outperforms the original 3D R-tree and the TB-tree typically by a big margin.

  • PDF

Load Shedding Method based on Grid Hash to Improve Accuracy of Spatial Sliding Window Aggregate Queries (공간 슬라이딩 윈도우 집계질의의 정확도 향상을 위한 그리드 해쉬 기반의 부하제한 기법)

  • Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • As data stream is entered into system continuously and the memory space is limited, the data exceeding the memory size cannot be processed. In order to solve the problem, load shedding methods which drop a part of data to prevent exceeding the storage space have been researched. Generally, a traditional load shedding method uses random sampling with optimized rate according to data deviation. The method samples data not to distinguish those used in spatial query because the method uses only a random sampling with optimized rate according to data deviation. Therefore, the accuracy of query was reduced in u-GIS environment including spatial query. In this paper, we researched a new load shedding method improving accuracy of the query in u-GIS environment which runs spatial query and aspatial query simultaneously. The method uses a new sampling method that samples data having low probability used in query. Therefore proposed method improves spatial query accuracy and query processing speed as applying spatial filtering operation to sampling operator.

  • PDF

Efficient Query Indexing for Short Interval Query (짧은 구간을 갖는 범위 질의의 효율적인 질의 색인 기법)

  • Kim, Jae-In;Song, Myung-Jin;Han, Dae-Young;Kim, Dae-In;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.507-516
    • /
    • 2009
  • In stream data processing system, generally the interval queries are in advance registered in the system. When a data is input to the system continuously, for realtime processing, a query indexing method is used to quickly search queries. Thus, a main memory-based query index with a small storage cost and a fast search time is needed for searching queries. In this paper, we propose a LVC-based(Limited Virtual Construct-based) query index method using a hashing to meet the both needs. In LVC-based query index, we divide the range of a stream into limited virtual construct, or LVC. We map each interval query to its corresponding LVC and the query ID is stored on each LVC. We have compared with the CEI-based query indexing method through the simulation experiment. When the range of values of input stream is broad and there are many short interval queries, the LVC-based indexing method have shown the performance enhancement for the storage cost and search time.

A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting (음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구)

  • 오세진;황철준;김범국;정호열;정현열
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF

Self-learning Method Based Slot Correction for Spoken Dialog System (자기 학습 방법을 이용한 음성 대화 시스템의 슬롯 교정)

  • Choi, Taekyoon;Kim, Minkyoung;Lee, Injae;Lee, Jieun;Park, Kyuyon;Kim, Kyungduk;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.353-360
    • /
    • 2021
  • 음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.

  • PDF

Declustering Policies Using Spatial-Temporal Proximity in Moving Objects DataBases (이동체 데이터베이스에서 시공간 근접성을 고려한 디클러스터링 정책)

  • 홍은석;서영덕;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.118-120
    • /
    • 2003
  • 이동체 데이터베이스에서 이동체 궤적의 양은 엄청나게 많아서 기존의 단일 디스크 기반에서는 특정영역의 질의에 대한 빠른 응답과 처리율의 향상을 볼수 없다. 따라서 고성능 질의 처리를 위한 시스템의 성능 향상을 위해서는 병렬 처리 기법의 도입이 필요하다. 이런 병렬 처리 기법 중, 기존의 디클러스터링 방법에서는 시간이 지남에 따라 연속적으로 보고되는 이동체 특성을 고려하지 않고 있다. 그러므로 대용량 이동체 데이터에 대하여 고성능 질의 처리를 위한 새로운 디클러스터링 방법이 필요하다. 이 논문에서는 대용량 이동체 데이터베이스에 대한 고성능 질의 처리를 위한 새로운 디클러스터링 정책을 제시하였다. 이동체 데이터의 MBB중 공간 좌표의 근접성만을 고려하여 하나의 SemiAllocation Disk 값을 설정하고 그 값과 시간 도메인을 다시 고려하여 근접성을 계산함으로써 디클러스터링을 할 수 있다. 또한 디스크별 Load Balancing을 고려하여 보다 정확한 디클러스터링 효과를 가지도록 하였다. 이와 같이 이동체의 특성을 고려한 새로운 디클러스터링 정책으로 시스템의 성능을 향상 시킬 수 있다.

  • PDF

Research on Real-time Stream Data Monitoring for BodyNet (BodyNet 에서의 스트림 데이터 실시간 모니터링 기법의 연구)

  • Lee, Seul-A;Choi, Ok-ju;Lee, Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.126-129
    • /
    • 2010
  • WBAN(Wireless Body Area Network)기반의 의료 응용으로 실시간 모니터링 시스템을 구현하였다. 특히 산소포화도 생체 센서들로부터 연속적으로 전송되는 스트림 데이터에 대해 다양한 조건을 포함하는 질의들이 실행 되는데 이러한 실시간 모니터링 질의들을 효율적으로 식별하기 위한 질의 인덱스를 설계하였다. 매번 모든 질의들을 실행하기에는 시간이 많이 걸리기 때문에 Interval Skip List 를 이용하여 빠르고 효율적으로 식별하도록 설계하였다. 이로써 위급한 상황의 환자의 건강에 문제가 생겼을 때 신속하게 대처할 수 있는 환경을 제공한다. 본 논문에서는 방대한 양의 스트림 데이터와 이 데이터를 실시간으로 감시할 수 있도록 Interval Skip List 를 스마트 메디컬 스페이스(m-MediNet)에 적용한 방법을 기술하고 있다.