• 제목/요약/키워드: 연속음성

검색결과 420건 처리시간 0.022초

최대 엔트로피 모델을 이용한 연속음성인식에서의 인식 신뢰도 측정 (CONFIDENCE MEAUSRING METHOD FOR CONTIUOUS SPEECH RECOGNITION USING MAXIMUM ENTROPY MODEL)

  • 정상근;정민우;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.200-204
    • /
    • 2004
  • 음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로. 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는, 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.

  • PDF

연속 숫자음 전화음성의 인식 성능 향상에 관한 연구 (A Study on the Performance Improvement of Connected Digit Telephone Speech Recognition)

  • 김민성;정성윤;손종목;배건성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.143-146
    • /
    • 2002
  • 전화음성의 경우 전화 회선의 채널 대역폭 제한과 통화로 형성시 달라지는 채널의 특성으로 인하여 마이크 음성에 비하여 인식 성능이 많이 저하된다. 본 연구에서는 연속 숫자음 전화음성의 인식율 향상을 위해 채널 왜곡 보상 기법들을 적용하고, HTK 기반의 인식 실험을 통해 보상 기법에 따른 인식 성능을 비교하였다. 채널 왜곡 보상 기법으로 CMN, RASTA, RTCN 등을 적용하고, 각 보상 기법에 따라 HMM의 state 수, mixture 수를 바꾸어 가며 인식 실험한 결과를 제시한다.

  • PDF

모음열과 VCCV단위 HMM을 이용한 연속 숫자 음성인식 (A Continuous Digits Speech Recognition Applied Vowel Sequence and VCCV Unit HMM)

  • 윤재선;정광우;홍광석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.25-28
    • /
    • 2001
  • 본 논문에서는 조음 효과에 대처할 수 있는 반음절, 반음절 + 반음절 단위 HMM과 모음열 정보를 적용하여 연속 숫자 음성인식을 구현하였다. 모음열 정보를 적용하여 기준모델을 모음이 포함된 HMM단위로만 구성한 시스템과 모든 기준모델과 비교하는 시스템과 성능을 비교하였다. 인식실험결과 인식률의 향상으로 제안된 방법이 효율적임을 확인하였다.

  • PDF

연속 음성 인식을 위한 그룹 식별 신경망과 연결 강도 초기화에 대한 연구 (A Study on the Verify Group Neural Network and Weight Initialization for Continuous Speech Recognition)

  • 최기훈
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.73-75
    • /
    • 1995
  • 연속 음성 인식을 위한 신경망과 학습속도를 줄이기 위한 연결강도 초기화에 관해 다루고 있다. 우선 음소를 여러개의 그룹으로 나눈 후 각각의그룹에 대한 음소를 인식하는 신경망과 자신의 그룹을 판별하는 VGNN 으로 신경망을 구성한다. 여기서 구성되는 신경망은 각각의 음소를 인식하는 출력을 낼 뿐 아니라, 입력이 자신의 그룹에 속하는지 그렇지 않은지를 판별하는 출력을 낸다. 이런 신경망을 학습시키는 데 상당한 시간이 걸리므로 이 신경망의 학습속도를 줄이기 위해 학습 데이터를 사용하여 신경망의 연결 강도를 초기화한다.

  • PDF

주파수 분할 및 최소 자승법을 이용한 TSIUVC 근사합성법에 관한 연구 (A Study on TSIUVC Approximate-Synthesis Method using Least Mean Square and Frequency Division)

  • 이시우
    • 한국멀티미디어학회논문지
    • /
    • 제6권3호
    • /
    • pp.462-468
    • /
    • 2003
  • 유성음원과 무성음원을 사용하는 음성부호화 방식에 있어서, 같은 프레임 안에 모음과 무성자음이 있는 경우에 음질저하 현상이 나타난다. 본 연구에서는 같은 프레임안에 유성음과 무성자음이 존재하지 않도록 FIR-STREAK 필터 와 zerocrossing rate을 이용한 개별피치 펄스를 사용하여 연속음성에서 무성자음을 포함한 천이구간(TSIUVC)을 탐색, 추출하는 방법을 제안한다. 또한 본 논문에서는 최송 자승법과 주파수 대역 분할을 이용한 TSIUVC 근사합성법을 제안하였다. 실험 결과, 0.547KHz 이하 2.813KHz 이상의 주파수 정보를 사용하여 TSIUVC 음성파형을 양호하게 근사합성할 수 있었으며, 최대 오차신호가 일그러짐이 적은 TSIUVC 근사합성 파형에 중요한 역할을 한다는 것을 알 수 있었다. 이 방법은 음성합성, 음성분석, 새로운 Voiced/Silence/TSIUVC의 음성부호화 방식에 활용할 수 있을 것으로 기대된다.

  • PDF

시간 연속성을 갖는 비음수 행렬 분해를 이용한 음질 개선 (Speech Enhancement Using Nonnegative Matrix Factorization with Temporal Continuity)

  • 남승현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.240-246
    • /
    • 2015
  • 본 논문은 시간 연속성을 갖는 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF)를 이용하여 잡음에 열화된 음성 신호의 음질을 개선하는 문제를 다룬다. 음성과 잡음 신호는 포아송 분포로 모델되며, NMF의 기본 벡터와 이득 벡터는 감마 분포로 모델된다. 이득 벡터의 시간 연속성은 음질 개선에 중요한 영향을 미치는 것으로 알려져 있다. 본 논문에서 시간의 연속성은 이득 벡터를 감마-마르코프 연쇄(Gamma-Markov chain, GMC) 사전 분포로 모델함으로써 이루어진다. 실험 결과는 제안된 알고리즘이 잡음 신호의 시간 연속성을 효과적으로 모델하는 것을 보여준다.

이산 지속시간제어 연속분포 HMM을 이용한 연속 음성 인식 (Korean Continuous Speech Recognition Using Discrete Duration Control Continuous HMM)

  • 이종진;김수훈;허강인
    • 한국음향학회지
    • /
    • 제14권1호
    • /
    • pp.81-89
    • /
    • 1995
  • 본 논문에서는 연속분포 HMM에 이산 지속시간제어와 회귀계수를 파라메터로 추가한 이산 지속시간제어 연속분포 HMM 모델을 이용하여 한국어 연속음성 인식 시스템을 구성하였다. 또한 25 문장의 로보트 제어명령문을 유한상태 오토마타에 의해 구문제어를 실시한 One Pass DP법으로 인식 실험을 실시하였다. 4연 숫자음에 대한 인식 실험에서 이산 지속시간 제어와 회귀 계수를 포함한 경우 평균 $93.8\%$의 인식율을, 포함하지 않은 경우 $80.7\%$의 인식율을 얻었다. 로보트 제어 명령문의 인식에서는 구문제어를 실시하지 않은 경우 평균 $90.9\%$, 유한 상태 오토마타에 의한 구문제어를 이용한 경우 평균 $98.4\%$$7.5\%$의 인식율이 향상되었다.

  • PDF

신경망을 이용한 연속 숫자음 인식에 관한 연구 (A Study On Continuous Digits Recognition Using the Neural Network)

  • 이성권;김순협
    • 한국음향학회지
    • /
    • 제17권4호
    • /
    • pp.3-13
    • /
    • 1998
  • 본 논문은 음성 다이어링 시스템을 구현하기 위한 한국어 단독 숫자음 및 연속 숫 자음 인식에 관한 것이다. 단독 숫자음의 인식은 미지의 입력 음성을 재귀 신경망을 이용하 여 모델링된 각 모델에 인가하고, 신경 회로망의 출력 노드의 상태열을 검사하여 적절한 상 태 전이를 하며 최고의 확률값을 출력하는 모델을 인식된 결과로 출력한다. 연속 숫자음의 인식은 미지의 연속 숫자음을 재귀 신경 회로망을 이용한 연속 숫자음 모델에 입력하고, 신 경 회로망의 출력에 대하여 적절한 상태 전이에 대한 검사와 레벨 빌딩(Level Building)을 수행하여 최소의 오차를 가지는 모델열을 인식된 결과로 출력한다. 재귀 신경 회로망을 이 용하여 음절 모델을 만드는 과정에서 재귀 노드는 예상치가 주어지지 않으므로 신경 회로망 의 학습에서 제외되어 현저한 학습 속도의 저하를 가져온다. 따라서 본 논문에서는 재귀 신 경 회로망의 학습 속도를 향상시키기 위한 2가지 방법을 제안 한다. 첫 번째는 재귀 신경 회로망의 재귀 노드의 예상치를 실험적으로 주어줌으로써 학습 속도의 향상을 도모하였다. 두 번째는 음절 모델의 출력노드의 개수와 음절 모델의 세그먼트 경계를 알고리듬을 이용하 여 자동적으로 조절하였다. 실험결과, 단독어의 경우 음절 '에'에 포함하는 한국어 11개의 숫 자음에 대하여 화자 종속의 경우 97.3%, 화자 독립의 경우 80.5%의 인식률을 얻었으며, 연 속 숫자음의 경우는 21종류의 연속 숫자음에 대하여 화자 종속에서 88.2%, 화자 독립의 경 우 81.3%의 인식률을 얻을 수 있었다.

  • PDF

대어휘 연속음성 인식을 위한 결합형태소 자동생성 (Automatic Generation of Concatenate Morphemes for Korean LVCSR)

  • 박영희;정민화
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.407-414
    • /
    • 2002
  • 본 논문에서는 형태소를 인식 단위로 하는 한국어 연속음성 인식의 성능 개선을 위해 결합형태소를 자동으로 생성하는 방법을 제시한다. 학습코퍼스의 54%를 차지하고 오인식의 주요인이 되는 단음절 형태소를 감소시켜서 인식 성능을 높이는 것을 목적으로 한다. 품사의 접속 규칙을 이용한 기존의 지식기반의 형태소 결합방법은 접속 규칙의 생성이 어렵고, 학습 코퍼스에 나타난 출현 빈도를 반영하지 못하여 저빈도 결합형태소를 다수 생성하는 경향을 보였다. 본 논문에서 제시하는 방법은 학습데이터의 통계정보를 이용하여 결합형태소를 자동 생성한다. 결합할 형태소 쌍 선정을 위한 평가척도로는 형태소 쌍의 빈도, 상호정보, 유니그램 로그 유도값(unigram log likelihood)을 이용하였고 여기에 한국어의 특성 반영을 위해 단음절 형태소 제약과 형태소 결합길이를 제한하는 두개의 제약사항을 추가하였다. 학습에 사용된 텍스트 코퍼스는 방송뉴스와 신문으로 구성된 7백만 형태소이고, 최빈도 2만 형태소 다중 발음사전을 사용하였다. 세가지 평가척도 중 빈도를 이용한 것의 성능이 가장 좋았고 여기에 제약조건을 반영하여 성능을 더 개선할 수 있었다. 특히 최대 결합 길이를 3으로 할 때의 성능이 가장 우수하여 언어모델 혼잡도는 117.9에서 97.3으로 18%감소했으며, 형태소 에러율 (MER: Morpheme error rate)은 21.3%에서 17.6%로 감소하였다. 이때 단음절 형태소는 54%에서 30%로 24%가 감소하였다.