• Title/Summary/Keyword: 연속밀도 은닉마코프모델

Search Result 3, Processing Time 0.015 seconds

Gaussian Density Selection Method of CDHMM in Speaker Recognition (화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법)

  • 서창우;이주헌;임재열;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.711-716
    • /
    • 2003
  • This paper proposes the method to select the number of optimal mixtures in each state in Continuous Density HMM (Hidden Markov Models), Previously, researchers used the same number of mixture components in each state of HMM regardless spectral characteristic of speaker, To model each speaker as accurately as possible, we propose to use a different number of mixture components for each state, Selection of mixture components considered the probability value of mixture by each state that affects much parameter estimation of continuous density HMM, Also, we use PCA (principal component analysis) to reduce the correlation and obtain the system' stability when it is reduced the number of mixture components, We experiment it when the proposed method used average 10% small mixture components than the conventional HMM, When experiment result is only applied selection of mixture components, the proposed method could get the similar performance, When we used principal component analysis, the feature vector of the 16 order could get the performance decrease of average 0,35% and the 25 order performance improvement of average 0.65%.

Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution (화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응)

  • Kim Dong Kook;Kim Young Joon;Kim Hyun Woo;Kim Nam Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF