• Title/Summary/Keyword: 연속류

Search Result 587, Processing Time 0.033 seconds

Classification of Estuaries based on Morphological Convergence (형태적 수렴 특성을 이용한 하구 분류)

  • SHIN, Hyun-jung;RHEW, Hosahng;LEE, Guan-hong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.1-22
    • /
    • 2012
  • The classification scheme of estuaries can be divided into two categories: qualitative classification based on geomorphic characteristics and quantitative classification based upon the physical properties of water body. While simple and intuitive scheme of the former is difficult to quantify, the latter is not easy to apply due to the lack of data. A classification scheme based on morphological convergence is very promising because it only requires easily accessible data such as width and depth of channels, as well as it can characterize estuaries in terms of tidal propagation. Thus, this paper examines the classification scheme based on estuarine morphological convergence using depth and width data obtained from 19 major Korean estuaries. Morphological convergence for each estuary was estimated with the estuarine length, width and depth data to get the convergence parameters, which includes the degree of funneling ${\nu}$ and the dimensionless estuarine length $y_0$. The transfer function ${\xi}({\nu},ky)$ is then deduced analytically from 1D depth-integrated hydrodynamic momentum equation and continuity equation for estuarine shapes. Tidal response of each estuary is finally calculated using ${\nu}$, $y_0$ and ${\xi}({\nu},ky)$ for comparison and classification. The 19 Korean estuaries were classified into three groups: tidal amplitude-dominated estuaries with standing wave-like tidal response (group 1), current-dominated estuaries with progressive wave-like tidal response (group 2), and the intermediate group (group 3) between groups 1 and 2. The sensitivity analysis revealed that uncertainties in determining the estuarine length can have a critical effect upon the results of classification, which indicates that the reasonable determination of the estuarine length is of critical importance. Once the estuarine length is feasibly determined, depth-convergence can be neglected without any negative effect on the classification scheme, which has an important ramification on the wide applicability of the classification scheme.

Changes in Abscisic Acid and Gibberellin Levels during Stratification in Panax ginseng Roots (인삼근의 휴면타파과정에 있어서 Abscisic acid 함량 및 Gibberellin 활성의 변화)

  • Choi, Sun-Young;Lee, Kang-Soo;Ryu, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 1989
  • The present study was carried out to get the basic information for clarifying physiological mechanism of breaking dormancy and sprouting in Panax ginseng roots. Changes in Abscisic acid (ABA) content and Gibberellin (GA) activity were investigated in one-year-old root during stratification at 4$^{\circ}C$. 15$^{\circ}C$. and 15$^{\circ}C$ after 60day-treatment at 4$^{\circ}C$. Sprouting rate at 15$^{\circ}C$ was 35% in 30days storage at 4$^{\circ}C$ and 100% in longer than 60days, but there was no sprout in both the constant treatment at 4$^{\circ}C$ or 15$^{\circ}C$ regardless of the treatment period. The longer the period of low temperature treatment. number of days to the first and 50% sprouting was shortened, and number of days to 50% from first sprouting was also shortened. ABA content in the upper part of root(contained bud) was gradually increased at both 4$^{\circ}C$ and 15$^{\circ}C$ as the treatment period was extended. and the degree of increase was higher at 15$^{\circ}C$. In the lower part. it showed a slight increase at 15$^{\circ}C$. while showed little change at 4$^{\circ}C$ throughout the treatment period. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$, it was greatly increased in the upper part. while rather slightly decreased in the lower part of root. GA activity in the upper part was gradually decreased at both 4$^{\circ}C$ and 15$^{\circ}C$, and the degree of decrease was higher at 15$^{\circ}C$. In the lower part. it was similar tendency to those in the upper part. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$. it was remarkably increased in both the upper and lower part. The increase was great in the low Rf region, while the decrease appeared relatively in the high Rf region compared to those of 60day-treatment at 4$^{\circ}C$. The above results indicated that the breaking dormancy and sprouting of bud were closely associated with the degree of GA activities in response to temperature condition .during stratification rather than the direct effect associated with the changes in ABA content.

  • PDF

The Comparison of the Ultra-Violet Radiation of Summer Outdoor Screened by the Landscaping Shade Facilities and Tree (조경용 차양시설과 수목에 의한 하절기 옥외공간의 자외선 차단율 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.20-28
    • /
    • 2013
  • The purpose of this study was to compare the ultra-violet(UV) radiation under the landscaping shade facilities and tree with natural solar UV of the outdoor space at summer middays. The UVA+B and UVB were recorded every minute from the $20^{th}$ of June to the $26^{th}$ of September 2012 at a height of 1.1m above in the four different shading conditions, with fours same measuring system consisting of two couple of analog UVA+B sensor(220~370nm, Genicom's GUVA-T21GH) and UVB sensor(220~320nm, Genicom's GUVA-T21GH) and data acquisition systems(Comfile Tech.'s Moacon). Four different shading conditions were under an wooden shelter($W4.2m{\times}L4.2m{\times}H2.5m$), a polyester membrane structure ($W4.9m{\times}L4.9m{\times}H2.6m$), a Salix koreensis($H11{\times}B30$), and a brick-paved plot without any shading material. Based on the 648 records of 17 sunny days, the time serial difference of natural solar UVA+B and UVB for midday periods were analysed and compared, and statistical analysis about the difference between the four shading conditions was done based on the 2,052 records of daytime period from 10 A.M. to 4 P.M.. The major findings were as follows; 1. The average UVA+B under the wooden shelter, the membrane and the tree were $39{\mu}W/cm^2$(3.4%), $74{\mu}W/cm^2$(6.4%), $87{\mu}W/cm^2$(7.6%) respectively, while the solar UVA+B was $1.148{\mu}W/cm^2$. Which means those facilities and tree screened at least 93% of solar UV+B. 2. The average UVB under the wooden shelter, the membrane and the tree were $12{\mu}W/cm^2$(5.8%), $26{\mu}W/cm^2$(13%), $17{\mu}W/cm^2$(8.2%) respectively, while the solar UVB was $207{\mu}W/cm^2$. The membrane showed the highest level and the wooden shelter lowest. 3. According to the results of time serial analysis, the difference between the three shaded conditions around noon was very small, but the differences of early morning and late afternoon were apparently big. Which seems caused by the matter of the formal and structural characteristics of the shading facilities and tree, not by the shading materials itself. In summary, the performance of the four landscaping shade facilities and tree were very good at screening the solar UV at outdoor of summer middays, but poor at screening the lateral UV during early morning and late afternoon. Therefore, it can be apparently said that the more delicate design of shading facilities and big tree or forest to block the additional lateral UV, the more effective in conditioning the outdoor space reducing the useless or even harmful radiation for human activities.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Environmental Pollution in Korea and Its Control (우리나라의 환경오염 현황과 그 대책)

  • 윤명조
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.5-6
    • /
    • 1972
  • Noise and air pollution, which accompany the development of industry and the increase of population, contribute to the deterioration of urban environment. The air pollution level of Seoul has gradually increased and the city residents are suffering from a high pollution of noise. If no measures were taken against pollution, the amount of emission of pollutant into air would be 36.7 thousand tons per year per square kilometer in 1975, three times more than that of 1970, and it would be the same level as that of United States in 1968. The main sources of air pollution in Seoul are the exhaust has from vehicles and the combustion of bunker-C oil for heating purpose. Thus, it is urgent that an exhaust gas cleaner should be instaled to every car and the fuel substituted by less sulfur-contained-oil to prevent the pollution. Transportation noise (vehicular noise and train noise) is the main component of urban noise problem. The average noise level in downtown area is about 75㏈ with maximum of 85㏈ and the vehicular homing was checked 100㏈ up and down. Therefore, the reduction of the number of bus-stop the strict regulation of homing in downtown area and a better maintenance of car should be an effective measures against noise pollution in urban areas. Within the distance of 200 metres from railroad, the train noise exceeds the limit specified by the pollution control law in Korea. Especially, the level of noise and steam-whistle of train as measured by the ISO evaluation can adversely affect the community activities of residents. To prevent environmental destruction, many developed countries have taken more positive action against worsening pollution and such an action is now urgently required in this country.

  • PDF

Clinical Impact of Bronchial Reactivity and Its Relationship with Changes of Pulmonary Function After Asthmatic Attack Induced by Methacholine (기관지 반응성의 임상적 의의 및 메타콜린으로 유도된 천식 발작시 폐기능 변화와의 관계)

  • Ryu, Yon-Ju;Choi, Young-Ju;Kwak, Jae-Jin;Lee, Ji-A;Nam, Seung-Hyun;Park, Chang-Han;Chaon, Saon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.24-36
    • /
    • 2002
  • Background: Bronchial reactivity is known to be a component of airway hyperresponsiveness, a cardinal feature of asthma, with bronchial sensitivity, and is increments in response to induced doses of bronchoconstrictors as manifested by the steepest slope of the dose-response curve. However, there is some controversy regarding methods of measuring bronchial reactivity and clinical impact of such measurements. The purpose of this study was to evaluate the clinical significance and assess the clinical use by analyzing the relationship of the bronchial sensitivity, the clinical severity and the changes in pulmonary function with bronchial reactivity. Method: A total of 116 subjects underwent a methacholine bronchial provocation test. They were divided into 3 groups : mild intermittent, mild persistent, moderate and cough asthma. Severe patients were excluded. Methacholine PC20 was determined from the log dose-response curve and PC40 was determined by one more dose inhalation after PC20. The steepest slope of log dose-response curve, connecting PC20 with PC40, was used to calculate the bronchial reactivity. Body plethysmography and a single breath for the DLCO were done in 43 subjects before and after methacholine test. Results: The average bronchial reactivity was 38.0 in the mild intermittent group, 49.8 in the mild persistent group, 61.0 in the moderate group, and 41.1 in the cough asthma group. There was a weak negative correlation between PC20 and bronchial reactivity. A heightened bronchial reactivity tends to produce an increased clinical severity in patients with a similar bronchial sensitivity and basal spirometric pulmonary function. There were significant correlations between the bronchial reactivity and the initial pulmonary function before the methacholine test in the order of sGaw, Raw, $FEV_1$/FVC, MMFR. There were no correlations between the bronchial sensitivity and the % change in the pulmonary function parameters after the methacholine test. However, there were significant correlations between the bronchial reactivity and the PEF, $FEV_1$, DLCO. Conclusion: There was weak significant negative correlation between the bronchial reactivity and the bronchial sensitivity, and the bronchial reactivity closely reflected the severity of the asthma. Accordingly, measuring both the bronchial sensitivity and the bronchial reactivity can be of assistance in assessing of the ongoing disease severity and in monitoring the effect of therapy.