Kim, Cheonyong;Cho, Hyunchong;Kim, Sangdae;Kim, Sang-Ha
Journal of KIISE
/
v.41
no.11
/
pp.967-973
/
2014
A continuous object is large phenomenon diffusing continuously. Therefore, a large number of sources is a major problem in researches for continuous object. Existing studies for continuous object detecting focus on reducing communication cost generated by the sources. But, they only deal with the static sink located in fixed position. In this paper, we propose the location update scheme for mobile sinks in continuous object detecting. Generally, to receive data, a mobile sink should notice its current location to sources. Previous studies for location update of mobile sinks consider individual object. So they need a lot of energy for location update when a mobile sink notices its current location toward many sources of a continuous object independently. Proposed scheme exploits regional locality of the sources involved one continuous object. The regional locality makes the location update of mobile sinks efficient. Our simulation results show that the proposed scheme superior to existing schemes in terms of energy efficiency.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.12A
/
pp.1171-1180
/
2010
In wireless sensor networks, reliable event detection is one of the most important research issues. For the reliable event detection, previous works usually assume the events are only individual objects such as tanks and soldiers. Recently, many researches focus on detection of continuous objects such as wild fire and bio-chemical material, but they merely aim at methods to reduce communication costs. Hence, we propose a reliable continuous object detection scheme. However, it might not be trivial. Unlike individual objects that could be referred as a point, a continuous object is shown in a dynamic two-dimensional diagram since it may cover a wide area and it could dynamically alter its own shape according to physical environments, e.g. geographical conditions, wind, and so on. Hence, the continuous object detection reliability can not be estimated by the indicator for individual objects. This paper newly defines the reliability indicator for continuous object detection and proposes an error recovery mechanism relying on the estimation result from the new indicator.
Park, Bo-Mi;Lee, Eui-Sin;Kim, Tae-Hee;Park, Ho-Sung;Lee, Jeong-Cheol;Kim, Sang-Ha
Journal of KIISE:Computing Practices and Letters
/
v.15
no.8
/
pp.591-595
/
2009
Most existing routing protocols for object detection and tracking in wireless sensor networks concentrate on finding ways to detect and track one and more individual objects, e.g. people, animals, and vehicles, but they do not be interested in detecting and tracking of continuous objects, e.g., poison gas and biochemical. Such continuous objects have quite different properties from the individual objects since the continuous objects are continuously distributed across a region and usually occupy a large area, Thus, the continuous objects could be detected by a number of sensor nodes so that sensing data are redundant and highly correlated. Therefore, an efficient data collection and report scheme for collecting and locally aggregating sensing data is needed, In this paper, we propose the Continuous Object Tracking Mechanism based on Dynamic Rectangle Zone for detecting, tracking, and monitoring the continuous objects taking into account their properties.
Proceedings of the Korean Statistical Society Conference
/
2004.11a
/
pp.219-225
/
2004
코호넨(T. Kohonen)의 자기조직화지도(Self-Organizing Map; SOM)은 저차원 그리드 공간에 고차원 다변량 자료를 축약하여 시각적으로 나타내는 비지도 학습법의 일종으로 최근 들어 통계 분석자들이 많은 관심을 가지고 있는 분야이다. 그러나 SOM은 개체공간의 연속형으로 표현되는 개체를 저차원 그리드공간에 승자노드에 비연속적으로 표현한다는 단점을 지니고 있다. 본 논문에서는 SOM을 통계적 목적으로 사용하기 위해 요구되는 그리드공간에 개체를 연속적으로 표현하는 방법들을 제안하고 활용 예를 제시하고자 한다
Q-학습은 최근에 연구되는 강화학습으로서 환경에 대한 정의가 필요 없어 자율이동로봇의 행동학습에 적합한 방법이다. 그러나 다개체 시스템의 학습처럼 환경이 복잡해짐에 따라 개체의 입출력 변수는 늘어나게 되고 Q함수의 계산량은 기하급수적으로 증가하게 된다. 따라서 이러한 문제를 해결하기 위해 다개체 시스템의 Q-학습에 적합한 연속적인 Q-학습 알고리즘을 제안하였다. 연속적인 Q-학습 알고리즘은 개체가 가질 수 있는 모든 상태-행동 쌍을 하나의 Q함수에 표현하는 방법으로서 계산량 및 복잡성을 줄임으로써 동적으로 변하는 환경에 능동적으로 대처하도록 하였다. 제안한 연속적인 Q-학습 알고리즘을 벽으로 막힌 공간에서 두 포식자와 한 먹이로 구성되는 먹이-포식자 문제에 적용하여 먹이개체의 효율적인 회피능력을 검증하였다.
Kim, Myung-Eun;Kim, Cheonyong;Yim, Yongbin;Kim, Sang-Ha;Son, Young-Sung
KIPS Transactions on Computer and Communication Systems
/
v.7
no.12
/
pp.301-312
/
2018
In industrial wireless sensor networks, the continuous object detection such as fire or toxic gas detection is one of major applications. A continuous object occurs at a specific point and then diffuses over a wide area. Therefore, many studies have focused on accurately detecting a continuous object and delivering data to a static sink with an energy-efficient way. Recently, some applications such as fire suppression require mobile sinks to provide real-time response. However, the sink mobility support in continuous object detection brings challenging issues. The existing approaches supporting sink mobility are designed for individual object detection, so they establish one-to-one communication between a source and a mobile sink for location update. But these approaches are not appropriate for a continuous object detection since a mobile sink should establish one-to-many communication with all sources. The one-to-many communication increases energy consumption and thus shortens the network lifetime. In this paper, we propose the origin-centric communication scheme to support sink mobility in a continuous object detection. Simulation results verify that the proposed scheme surpasses all the other work in terms of energy consumption.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.697-699
/
2005
연속 변수 함수 최적화를 위한 진화 연산에서는 전통적으로 확률 분포를 도입하여 새로운 세대를 생성하는 기법을 사용하고 있다. 최근 들어 이러한 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 본 논문에서는 variational 베이지안 혼합 인자 분석 기법(Bayesian mixtures of factor analyzers)을 사용한 개체군의 분포 추정을 통해 연속 변수 함수의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하여 개체군의 다양성을 유지할 수 있기 때문에 지역 최적점으로 일찍 수렴하는 현상을 방지할 수 있으며, 세부 개체군 내의 분포 추정을 통해 탐색을 효율적으로 수행할 수 있다. 잘 알려진 평가 함수들에 대하여 다른 분포 추정 진화 연산과 비교하여 제안하는 방법의 우수성을 검증하였다.
Exploring distributional patterns of multivariate data is very essential in understanding the characteristics of given data set, as well as in building plausible models for the data. For that purpose, low-dimensional visualization methods have been developed by many researchers along various directions. As one of methods, Kohonen's SOM (Self-Organizing Map) is prominent. SOM compresses the volume of the data, yields abstraction from the data and offers visual display on low-dimensional grids. Although it is proven quite effective, it has one undesirable property: SOM's display is discrete. In this study, we propose two techniques for enhancing quality of SOM's display, so that SOM's display becomes continuous. The proposed methods are demonstrated in two numerical examples.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.321-323
/
2017
개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.
개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.