• Title/Summary/Keyword: 연소영역

Search Result 489, Processing Time 0.022 seconds

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

Experimental Study of Flow Characteristics with Swirl Number on Dump Combustor (모형 가스터빈 연소기에서 스월수에 따른 유동 특성에 관한 실험적 연구)

  • Park, Jae-Young;Han, Dong-Sik;Kim, Han-Seok;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • The swirl flow applied for high efficiency and reduction of emission such as NOx, CO in a gas turbine engine makes recirculation zone by shear layer in the combustion chamber. This recirculation zone influences a decreasing flame temperature and flame length by burned gas recirculation. Also it is able to suppress from instability in lean-premixed flame. In this study, it was found that the swirl flow field was characterized as function of swirl number using PIV measurement in dump combustor. As increasing swirl number, a change of flow field was presented and recirculation zone was shifted in the nozzle exit direction. Also turbulent intensity and turbulent length scale in combustor were decreased in combustion. It has shown reduction of eddies scale with swirl number increasing.

A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition (연료분출 조건에 따른 확산화염의 연소특성에 관한 연구)

  • Lee, Sung-No;An, Jin-Geun
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • The combustion characteristics of diffusion flame formed in the wake of a cylindrical stabilizer with varying fuel injection angle were studied. This study was performed by measuring the flame stability limits, lengths and temperatures of recirculation zones of flames, turbulence intensity in the wake of stabilizer, and concentration distribution of combustion gas, and by taking photographs of flames. The flame stability limits are dependent on fuel injection angle and main air velocity. The length and temperature of recirculation zone are dependent on fuel injection angle. As the length of the recirculation zone is decreased, the flame shows more stable behavior. The temperature of recirculation zone has a maximum value at the condition of theoretical mixture. The flame stability is enhanced when the temperature in the recirculation zone decreases. The turbulence intensity in the wake of stabilizer is independent of the fuel injection angle, but it is affected by stabilizer itself and main air flow condition. If the stabilization characteristics of flame is good, the concentration of $C_3H_8$ is high, but the concentration of $CO_2$ is low at the boundary of recirculation zone. The combustion characteristics of diffusion flame can be controlled by changing the fuel injection angles. The appropriate fuel injection angle should be selected to get high combustion efficiency, high load power, low environmental pollution, and clean combustion condition of fuel.

  • PDF

내연기관 연소 및 pollutant modeling

  • 허강열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.3-57
    • /
    • 2005
  • 왕복동 내연기관에서의 연소 및 배기가스 생성은 복잡한 3차원 영역 내에서 난류 유동, 분무, 화학반응, 열전달, 경계층 현상이 상호 연계되어 있는 매우 복합적인 과정이다. 특히 난류 연소 현상은 기관의 효율을 결정하는 연소 속도와 pollutant의 배출 농도를 결정하는 핵심 요소로서 관련 모델과 수치 해법에 대해 학술적, 공학적 측면에서 세계적으로 활발한 연구가 이루어지고 있다. 이를 위해 수행되는 다양한 실험 측정과 수치 해법을 통해 얻어지는 3차원 과도 상태의 방대한 스칼라량과 벡터량에 대한 정보를 효율적으로 처리하기 위해서는 적절한 가시화 과정이 필수적이다. 여기서는 최근 다양한 엔진 타입들에 대한 응용 사례와 함께 난류 연소 모델링을 위한 새로운 접근법으로서 조건평균법(conditional averaging)에 대해 간략히 소개하고자 한다. 난류예혼합연소에서의 난류화염속도에 대한 DNS와 영역조건평균에 기초한 예측식의 검증, 천연가스 jet의 자발화 지연기간, n-heptane jet의 자발화 진행 과정, HSDI 엔진, HCCI 엔진, CNG 엔진, LPG 분무 및 엔진, GDI 엔진 등에 대한 연구 결과들은 정보 가시화의 한 사례가 될 수 있을 것으로 생각된다.

  • PDF

Low Cycle Fatigue Life Prediction of Reusable Experimental Liquid Rocket Engine (재사용이 가능한 실험용 액체로켓엔진의 저주기 피로수명예측)

  • 한풍규;송준영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.8-9
    • /
    • 2002
  • 액체로켓엔진의 연소기는 고온고압의 연소가스에 의해 벽면온도가 매우 높은 수준에 도달하기 때문에, 연소기가 열적으로 안정적으로 작동할 수 있는 메카니즘이 필요하게 되며, 따라서 이러한 방식의 하나로서 추진제를 이용한 재생냉각방식이 널리 사용되고 있다. 일반적으로 재생냉각형 연소기의 내벽은 열전도도가 우수한 구리 또는 구리합금 계열이 많이 사용되고 있다. 이러한 내벽 재질의 내구성은 주로 creep rupture, low cycle thermal fatigue, thermal-mechanical ratcheting에 의해 결정되는데, 사각형태의 냉각채널의 연소기에서는 thermal-mechanical ratcheting 특성이 수명 결정 주요 인자이다. Thermal-mechanical ratcheting은 그림 1과 같이 연소가스 영역과 냉각제 영역을 분리하는 벽면에서 국부적인 부풀음이 일어나면서 벽면두께가 감소하는 소성변형 형태로 나타나는데, 이러한 것을 Dog- house 형상이라 한다.

  • PDF

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF