• 제목/요약/키워드: 연소안정한계

검색결과 38건 처리시간 0.027초

재순환역을 수반하는 동축분류예혼합화염에 관한 연구 (Stability of premixed double concentric jets flame with a recirculation zone)

  • 이등헌일;송규근
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.145-153
    • /
    • 1987
  • 본 논문에서는 예혼합동축분류화염에 있어서 재순환역 안으로의 기체(공기, 연료, 혼합기) 주입과 2차공기의 족회가 화염안정성, 화염형상 및 재순환역에 미치는 영향을 명확히 하였다.

바이오 오일-에탄올 혼합 연료의 고압축비 디젤엔진에서의 연소 및 배기특성 (Combustion and Emission Characteristics of High-Compression-Ratio Diesel Engine Fueled with Bio Oil-Ethanol Blended Fuel)

  • 김태영;이석환;장영운;김호승;강건용
    • 대한기계학회논문집B
    • /
    • 제38권6호
    • /
    • pp.501-511
    • /
    • 2014
  • 바이오매스 원료로부터 급속열분해 반응을 통하여 생산되는 바이오 오일은 화석연료를 대체할 수 있는 잠재력을 가지고 있다. 하지만, 바이오 오일은 에너지 밀도와 세탄가가 낮고 점성도가 높은 연료의 한계성이 있으므로 디젤엔진에 적용하기에는 제한적이다. 따라서, 안정적인 연소를 얻기 위해서는 바이오 오일을 세탄가가 높은 연료와 유화하거나 혼합하여 사용하여야 한다. 하지만 바이오 오일과 화석연료는 극성이 달라서 서로 혼합되지 않으며 가장 손쉽게 혼합되는 연료는 알코올계 연료이다. 본 연구에서는 바이오 오일의 연료특성을 향상시키기 위하여 에탄올 연료와 혼합하였으며, 연료의 자발화 특성을 향상시키기 위하여 세탄가 향상제인 PEG 400, 2-EHN 도 첨가하였다. 또한 최대 15%의 바이오 오일이 혼합된 혼합연료를 디젤엔진에서 안정적으로 연소시키기 위하여 고압축비 피스톤도 적용하였다.

페놀 폼의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Phenol Foam)

  • 박형주
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.122-127
    • /
    • 2010
  • 외부복사 열원(20, 25, 35, 50, $70kW/m^2$)과 산소/질소의 혼합가스의 농도 변화에 따른 페놀폼의 연소 특성을 분석하였다. 산소지수는 KS M ISO 4589-2를 만족하는 산소지수시험기를 사용하였으며, 점화시간, 임계열속, 그리고 질량감소속도는 ISO 5660-1를 만족하는 mass loss calorimeter를 사용하여 측정하였다. 연구결과, 외부 복사열원에서 임계열유속은 $28.99kW/m^2$, 평균질량감소속도는 $0.56{\sim}1.77g/m^2s$로 측정되었으며, 한계산소지수는 45.1%를 나타내었다. 모든 연구결과를 종합한 결과 페놀 폼이 다른 발포 물질에 비해 아주 우수한 화재안정성을 나타낸다는 것을 알 수 있었다.

자동차용 고온금속재료 연구개발

  • 김윤준;이용태
    • 기계와재료
    • /
    • 제22권3호
    • /
    • pp.96-109
    • /
    • 2010
  • 자동차는 다양한 형상과 기능을 가진 부품소재의 집합체라 할 수 있다. 자동차의 고출력화에 의한 연비향상과 각국의 환경규제 강화 요건을 충족시키기 위해 자동차 엔진의 작동온도와 이에 따른 배기가스의 온도가 꾸준히 높아지는 추세이다. 따라서 고온재료의 선택과 사용이 보다 중요해 지고 있다. 자동차에 사용되는 고온 부품은 설계사양에 맞추어 그리고 경제적인 측면을 고려하여 내열재료를 사용하는 방법과 표면처리를 하는 두 가지 방법이 주로 채택되고 있다. 내열재료를 사용하는 대표적인 부품은 엔진을 구성하는 부품과 연소실로부터 나오는 고온 고압의 배기가스가 이동하는 배기계 부품이다. 엔진을 구성하는 부품 중에는 냉각수에 의해 온도가 제어되는 부분은 경제적인 소재가 사용되나 밸브와 같은 부품은 고온재료가 채용된다. 가장 높은 온도에서 사용되는 배기계 부품에는 경제성이 감안되면서도 높은 열적, 기계적 안정성이 동시에 요구되고 있다. 전통적으로 배기부품에는 구상흑연주철이 널리 사용되어 왔고 현재에도 원가 측면의 강점을 이용해 대부분의 차량에 적용되고 있으나 일부 고출력, 고배기량 엔진의 경우에는 주철의 한계온도 이상의 배기온도가 요구되어 스테인리스 강을 도입하고 있다. 또한 내열 타이타늄 합금, 금속간화합물과 같은 고온재료가 개발됨에 따라 고가의 차종에는 신재료가 이들 부품으로 채용되고 있다. 이 글에서는 배기계 부품의 설계적인 요소에 의한 열적, 기계적 측면의 내구 특성을 살펴보고, 이들 부품에 보편적으로 적용되는 고온 금속재료의 종류 및 기계적 특성을 소개하였다. 아울러 미래의 환경친화적 자동차용 고온 부품을 개발하기 위하여 연구되고 있는 Super Si+MO, 스테인리스 강, TiAl, 고온 타이타늄 합금 등과 같은 자동차 내열 부품으로 사용되는 신소재의 연구개발 동향에 관하여 기술하였다.

  • PDF

터보펌프 파이로 시동기 기초연구 (Preliminary Study of a Turbopump Pyro Starter)

  • 홍문근;이수용
    • 한국추진공학회지
    • /
    • 제12권2호
    • /
    • pp.74-80
    • /
    • 2008
  • 로켓엔진을 시동할 때 사용하는 터보펌프 시동기를 개발하기 위한 개발로직을 검토하고 기초실험을 통해 요구조건과 설계인자의 적용범위를 도출하였다. 시동기에 사용하는 고체추진제인 AN계 복합추진제는 고-에너지의 가소제와 냉각제를 사용하고 상온에서 AN의 상변화에 따른 급격한 부피변화를 완화하는 상안정화를 적용하였다. 시동기 설계를 위한 기초실험을 통해 추진제의 연소속도는 $0.2{\sim}0.3\;mm/s$ 이며 압력지수는 $0.3{\sim}0.6$ 범위인 경우 충분한 안정성을 확보함을 확인하였다. 신뢰성 있게 파이로 시동기를 작동하기 위해서는 점화에너지의 크기 및 점화에너지 전달방법이 중요하였으며, 선정한 AN계 복합추진제의 안정한 점화를 위한 화염온도의 하한한계는 1400 K로 평가되었다.

NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향 (Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties)

  • 김은애;배병철;이철위;전영표;이영석;인세진;임지선
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.418-424
    • /
    • 2014
  • 본 연구에서는 NaCl/$H_3PO_4$ 혼합수용액을 사용하여 라이오셀 섬유의 내염화 처리를 수행하고 이에 따른 열 안정성과 내산화성의 향상 효과를 고찰하였다. 라이오셀 섬유를 다양한 공정조건으로 내염화 처리한 후 열 안정성과 내산화성을 측정 및 분석하고 그에 따른 메커니즘을 제시하였다. 실험결과, 내염화 처리된 라이오셀 섬유의 적분 열분해 온도(integral procedural decomposition temperature, IPDT)와 한계산소지수(limited oxygen index, LOI)는 약 23, 30% 증가하였으며, 활성화 에너지(activation energy, $E_a$) 값은 약 24% 향상된 것을 알 수 있었다. 이러한 결과는 $H_3PO_4$와 NaCl가 연소시 에스테르화 반응, 탈수소화 반응 및 C-C결합의 분해반응으로 char 형성을 촉진하고 섬유 표면에 형성된 탄소 층을 형성함으로써, 고분자 수지 내부로 산소와 열 공급을 물리적으로 차단하여 열 안정성과 내산화성이 향상된 것으로 판단된다. 이러한 결과를 바탕으로, NaCl/$H_3PO_4$ 혼합수용액을 이용한 내염화 처리 공정의 최적화된 인자 및 메커니즘을 제시하였고 열 안정성과 내산화성이 향상된 라이오셀을 성공적으로 제조하였다.

기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상 (Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate)

  • 가동원;장성온;정현숙;진영호
    • Composites Research
    • /
    • 제33권4호
    • /
    • pp.177-184
    • /
    • 2020
  • 난연 의류는 화염 및 고온 환경 속에서 착용자의 원활한 임무 수행을 돕고 추가적인 피해 확산을 방지한다. 그러나 기존 난연 의류의 높은 중량과 열 피로도는 개선이 필요하며, 친환경적인 방법으로 제작된 가볍고 편리한 난연 의류 개발이 요구되고 있다. 최근 인을 함유한 난연 물질 코팅으로 섬유에 난연성을 부여한 사례가 보고되고 있으나 이들은 국내외 방화복 및 난연 전투복 기준에 적합한 수준으로 발전될 필요성이 있다. 본 연구에서는 깊은 용융 용매로 기능성화된 산화 그래핀과 폴리인산암모늄을 동시에 섬유에 코팅하는 친환경적인 대량생산 공정을 제시한다. 코팅된 섬유는 열무게 분석(Thermogravimetric analysis), 수직불꽃저항성 시험(ASTM D6413), 콘칼로리미터법(ISO 5660-1), 한계 불꽃 확신 속도 시험(ISO 15025)으로 열 안정성 및 난연성이 시험되었다. 기능성화 산화그래핀과 폴리인산암모늄이 동시에 코팅된 직물은 단일 물질 코팅 직물보다 우수한 난연성을 보였고, 연소 이후에도 탄화된 부분의 팽창 효과로 섬유의 형상을 유지하는 것이 관찰되었다. 난연 직물의 세탁 안정성을 위해 추가적인 발수 처리 또한 시도되었다.

천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids) (Synthesized Oil Manufacturing Technology from Natural Gas, GTL)

  • 배지한;이원수;이흥연;김용헌
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.45-52
    • /
    • 2008
  • 천연가스로부터 청정연료인 합성유를 제조하는 GTL기술은 1920년대 군수의 목적으로 독일의 Fisher와 Tropsch에 의해서 석탄으로부터 합성유를 제조하는 기술의 필요에 의해 처음으로 개발되었다. 이후, 1960년대 인종차별로 인한 정치적 고립으로 석유수급이 어려웠던 남아프리카공화국의 수송용 연료의 필요에 의해 Sasol사에서 본격적으로 FT(Fisher-Tropsch) 합성기술을 상용화하기 시작했다. 최근까지도 저렴한 석유자원으로 인해 GTL기술이 원유 정제기술로부터 얻어지는 석유제품에 비해 경제성을 확보하지 못하여 본격적인 상업화가 지연되어 왔으나, 에너지 자원의 수급 및 기타 경제적, 환경적 변화로 인해 GTL사업에 대한 관심이 고조되고 있으며 보유 석유자원이 한계에 다다라 상대적으로 풍부한 천연가스의 석유화를 목표로 하고 있는 카타르를 중심으로 GTL플랜트 건설이 추진되고 있다. 천연가스를 원료로 석유제품(디젤 및 나프타, 윤활기유 등)을 만드는 GTL기술은 크게 3가지 공정으로 구분되는데, 천연가스에서 수소와 일산화탄소를 제조하는 합성가스 제조공정(Synthesis Gas Generation), 합성가스를 FT합성반응에 의해 고분자 선형탄화수소로 전환시키는 FT합성공정(FT Synthesis)과 FT합성유로부터 석유제품을 만드는 개질공정(Product Upgrading)으로 구성된다. 생산된 제품은 유황 및 질소화합물 등을 적게 함유하고 있고, 정유플랜트 연료보다 방향족성분이 적어, 연소 시 인체에 해로운 물질을 적게 생산하는 청정연료이며, 천연가스를 저온 액화하는 LNG사업에 비하여 운송이 용이하고 안정성이 높다는 장점을 가지고 있다.

  • PDF