• Title/Summary/Keyword: 연소시험

Search Result 1,284, Processing Time 0.026 seconds

An Economic Feasibility Study on Fuel Transfer of A Thermal Power Plant Considering CO2 Emission Cost (CO2 배출비용을 고려한 발전소의 연료교체 경제성에 대한 연구)

  • Lee, Sang-Joong;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • With respect to the goal of achieving at least 50[%] reduction of global emissions by 2050, the G8 leaders agreed to seek to share and adopt it with all Parties to the UNFCCC in the 34th Group of Eight Summit held in Toyako, Japan in July 2008. Korea is also expected to obey the Kyoto Protocol starting in 2013, which will result in a serious shock especially to the electric power industry. The power plants burning the fossil fuel produce more than 20 percent of national $CO_2$ emission. This paper presents an economic feasibility study on fuel transfer for a thermal power plant considering $CO_2$ emission cost. Calculation of the breakeven point for the fuel transfer from LNG to heavy oil of D power plant is demonstrated using the input-output coefficients obtained by the performance test.

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

Launch of PE/$LN_2O$ Hybrid Rocket Vehicle and Analysis of Flight Path (PE/$LN_2O$ 소형 하이브리드 시험발사 및 비행궤도 분석)

  • Lee, Min-Ho;Kim, Jae-Wook;Sin, Jun-Ho;Um, Yong-Kyung;Oh, Yu-Jin;Lee, Sun-Jae;Jung, Young-Kyu;Jo, Jae-Yun;Choi, Young-Rok;Lee, Jung-Pyo;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.820-824
    • /
    • 2010
  • The purpose of this study is to develop basic technology of hybrid rocket vehicle by constructed and launched. This small hybrid rocket using HDPE/LN2O and Aluminium steel for its body (weight : 12.5 kg, diameter : 114 mm, height : 1.8 m) was designed. The fuel grain and injector were designed for 50 kgf thrust and burning time 2.5 sec. This rocket was loaded the data acquisition device for obtaining data of pressure and velocity during its flying and equiped an automatic ejector system using spring/motor and timer to collect the rocket more safely after launching. It was launched successfully, but found some problem that the rocket's weight was heavier than expected and the thrust was not enough to reach the designed altitude and analyzed its flight path way.

  • PDF

Effects of Impellers and Floating Ring Seals on Performance of Centrifugal Pumps (임펠러 및 플로팅 링 실이 원심 펌프의 성능에 미치는 영향)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1083-1088
    • /
    • 2011
  • The effects of an impeller and floating ring seals on the performance of centrifugal pumps are investigated on the basis of their test results using water. The pumps are single-staged centrifugal pumps developed for 30-ton- and 75-ton-class liquid rocket engines, and are components of a turbopump that supplies propellants (liquid oxidizer and kerosene) to the combustion chamber. The exit width of the impellers and the numbers and exit angles of the impeller blades are found to have influences on the pump heads. In addition, the pumps have different efficiencies according to the gaps between the floating ring seals and the impellers, whereas the pump size seems to have less effect on the efficiency.

Forensic Engineering Study on Damage Assessment of the Damage to the Internal Parts of a Vehicle Involved in a Fire Accident (차량 화재의 기계 부품 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.255-261
    • /
    • 2010
  • Forensic engineering is the area of expertise of those qualified to serve as engineering experts in courts of law or arbitration proceedings. Especially failure of internal parts during vehicle fire accidents causing injuries and damage to property almost always generates conflict between the automaker and customer. Hence, the investigation of such events generally involves an engineering analysis. One of the possible reasons for such accidents caused by vehicle fire is the failure of the piston and connecting rod. By formal inspections and engineering tests, this study shows the results of investigation and the cause of failure of the mechanical parts. For this purpose the failure mechanism is analyzed by using fractography methods and by applying an instrumented indentation technique to compare the material properties of the reference part with those of the malfunctioning part.

$\mu\textrm{p}$-based Electronic Control System for Automobiles Part1. Electronic Engine Control System (자동차의 마이크로프로셋서를 이용한 전자식 제어시스템에 대한 연구 제1편 : 전자식 엔진 제어시스템)

  • Chae, Suk;Kim, Young-Lip;Liu, Joon;Kim, Kwang-Rak;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 1980
  • An engine control system in which the conventional mechanical ignition system is studied. The contact point of the breaker is replaced by the contactless magnetic pick up sensor from which the information of the speed and the position of the crankshaft is extracted , and further an electronic High Energy Ignitim System Is designed, implemented and tested . The High Energy Igniticwl System increases the secondary spark voltage of the ignition coil from the conventional 10000~15000 volts to the 30000~40000 volts resulting in improving the combustion efficiency. Also, instead of the conventional advimce mechanism forigniliontiming control, a microprocessorbased timinng mechanisn is installed to determine the ignition timing data in response to the engine rpm and the intake manifold vacuum.

  • PDF

Experimental Study on Smoke Production and Smoke Generation in Thermoplastic Resins Based on PP, PMMA, and PVC (열가소성 수지(PP, PMMA, PVC)의 연기생성 및 발생에 관한 실험적 연구)

  • Hwang, Euy-Hong;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Due to the complexity and large size of buildings, plastic resin is widely used as a building material. Accordingly, the occurrence of fires caused by plastics is increasing. Due to the nature of plastic resin fires, the amount of damage to properties and human life caused by combustion products such as smoke are large, and these damages are related to smoke production and smoke generation. Therefore, this study reviews smoke measurement methods and laws on domestic buildings and fire services. Experiments were conducted based on three smoke-related test standards (ISO 5660-1, ISO 12136, ASTM E 662). The experiment results indicate a total smoke production and generation by PP, PVC, and PMMA of 43.27, 32.83, and 12.33 ㎡, and 27.855, 9.599, and 6.975 g, respectively.

A Study for the Safety on the Flame Exposure of the Propane Cylinder (소형 프로판 용기의 화염 노출에 대한 안전성 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Park, Gi-Dong;Kim, Ki-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.36-40
    • /
    • 2015
  • To evaluate the safety of propane cylinder, the flame test was performed by the flame exposure scenario of propane cylinder. The cylinder which was exposed in a flame was rapidly occurred to increase the internal pressure by liquid expansion, if so it cause of physical explosion. Therefore, the cylinder which was applied with thermal pressure relief device sholud be not bursted and the propane should be discharged to outside safely. The flame average temperature that was around of cylinder is $600^{\circ}C$, and then it increased $700^{\circ}C$ by discharged propane. The result of flame test, the cylinder was deformed, but it was not bursted. The regulations of flame exposure test for propane cylinder were not restricted, this paper can be applied to restrict the flame test if the cylinder is possible to expose the flame. Also, the results is expected as reference for estimation of the pressure cylinder performance.

Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method (고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구)

  • Seo, Sang Kyu;Hahm, Hee Cheol;Kang, Yoon Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • The thermal response of carbon/phenolic used in a solid rocket nozzle liner was analyzed. In this paper, the numerical analysis of the thermal response of carbon/phenolic consists of (1) the integration equation of the boundary layer to obtain the convective heat transfer coefficient of the combustion gas on the rocket nozzle wall and (2) 1-D finite difference method for heat conduction of carbon/phenolic to calculate the ablation, char, and temperature. The calculated result was compared with the result of a blast-tube-type test motor. It is found that the calculated result shows good agreement with the thermal response of the test motor, except at the vicinity of the throat insert.