• Title/Summary/Keyword: 연소부하

Search Result 147, Processing Time 0.025 seconds

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구)

  • 정재모;안달홍;박정규
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • Stabilization and reduction of combustion noise and NOx emission from dry low NOx combustor of GE MS7001F gas turbine were achieved. Dry low NOx gas turbines that adopt the lean premixed combustion technology frequently generate the flame instability and high NOx emissions if not adequately tuned. Dynamic pressure oscillation during the combustion mode transfer increased as ambient temperature decreased with frequency of 80㎐ and magnitude of 4-9 psi. Effects of both combustor tuning for uniform fuel flow with burner nozzles and fuel pre-filling into transfer fuel valves on stabilisation of the dry low NOx combustor were very significant. Dynamic pressure oscillation during the combustion mode change was decreased up to 2.5 psi. Also, NOx emission from GE7F DLN-1 combustor can be maintained as low as 35-43ppm (15% O$_2$) in base load operation of 150 MW.

A Simulation for Analysis of Stability of Gas Turbine Governor using PSS/E (가스터빈 조속기의 안정도 해석을 위한 PSS/E 모의 실험)

  • 최인규
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.267-271
    • /
    • 1999
  • 연료를 작동 유체의 내부 또는 외부에서 연소시켜서 발생된 고온 고압의 가스를 터빈에 공급하여 회전력을 발생시키는 원동기를 가스터빈이라 하며, 가스터빈을 이용한 발전기와 달리 기동 및 정지 시간이 대단히 짧고, 부하 변화에 대한 속응성이 뛰어나기 때문에 전력계통 운영상 양수 발전기나 수력 발전기와 더불어 첨두 부하용으로 주로 사용된다. 본 고에서는 전력 계통에 병렬 운전 중인 가스터빈 발전기의 부하가 탈락되어 입력 에너지가 과잉으로 되었을 때, 제어 시스템의 중요한 파라미터인 연료량과 가스터빈 속도 및 배기가스의 온도가 비상 정지 수준에 도달하지 않고 안전하게 운전될 수 있는지의 여부, 즉 안정성을 판별하기 위하여 수행한 모의 시험에 대하여 기술하였다. 또, 부하가 탈락되지 않고 입력되는 연료량이 크게 변동하는 경우, 즉 큰 부하 변동을 모의 시험한 내용에 대하여 기술하였다.

  • PDF

Part Load Performance Characteristics according to Inlet Valve Angle (흡입 밸브 각도에 따른 엔진 부분부하 성능 특성)

  • Lee, Jung-Man;Lee, Jae-Won;Kim, Hyeong-Sig;Kwon, Soon-Tai;Park, Chan-Jun;Ohm, In-Yong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.161-166
    • /
    • 2008
  • This paper searched through mixture ratio response test whether exert effect that is some in part load performance of engine according to inlet valve angle in gasoline engine. Engines that inlet valve angle is narrow decreased quantity of NOx among exhaust gas than engine that inlet valve angle is wide, and ignition timing was retard, and fuel consumption improved a little. That quantity of NOx among exhaust gas decreases and ignition timing was retard can judge that fast burning occurred. Fast burning can decrease output decline and misfire that can happen at lean burning. Can be judged by thing which engine's combustion performance improves if inlet valve angle is narrow if examine test result.

  • PDF

수관식 관류 보일러 제어기의 구현

  • Kim, Jeong-Ho;Ha, Jeong-Hyeon;Chae, Yeong-Do;Jo, Sam-Hyeon
    • ETRI Journal
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 1986
  • 에너지 관리 시스팀(Energy Management System)의 한 분야로서 보일러 제어를 들수 있는데, 보일러의 경우에 있어서 보일러 부하에 따른 연료의 연소 처리 제어, 압력차의 제어, 급수 제어 장치, 점화 등에 자동 제어가 적용되어 실질적인 보일러의 안전 운전 및 열효율을 개선시킬수 있다. 본고는 (주) 열연 보일러의 수관식 관류 보일러에 마이크로프로세서를 이용하여, 급수, 연소 제어를 구현한 내용이다.

  • PDF

Performance Simulation of Part Load Operation for 2MWe Circulating Fluidized Bed Boiler (2MWe 순환유동상 보일러의 부분 부하 운전 성능 모사)

  • Kim, Taehyun;Choi, Sangmin;Hyun, Ju-soo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.35-36
    • /
    • 2012
  • Part load operation usually covers large periods of the total operation time on the economic ground and electricity demand in small-scale boilers. Performance analysis of part load behavior is very important for the purpose of boiler operation optimization. A simple thermal calculation approach is applied to predict performance of a pilot-scale circulating fluidized bed (CFB) boiler at part load operation. Verification has been carried out by comparing between calculation results an operation data of the boiler.

  • PDF

Performance characteristics of supercharged engine (과급기관의 성능 특성)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 1994
  • 기관의 출력성능은 기관으로 공급되는 연료공기의 혼합기량에 따라서 크게 달라진다. 이것은 기관의 출력성능은 기관으로 공급되는 흡기 용량에 따라서 변화하기 때문이다. 고출력을 얻기 위하여는 동일한 조건의 경우 흡기량을 증가시켜 기관 실린더 내에서 많은 연소 열에너지를 생성하는 것이 필요하다. 이러한 관점에서 기관의 체적 효율(volumetric efficiency)을 증가시킬 목적으로 여러가지 흡기 계통의 개서을 도모하고 있으나 흡기 용량을 증가시키는 방법의 하나는 과급기(supercharger)를 이용하는 과급 방식이다. 이와같은 과급방식은 기관의 출력성능의 향상을 가져오지만 기관 내부의 노크(knock), 연소 압력 및 열부하의 증가, 연비 문제등에 관한 여러가지 문제점이 제기되고 있다. 여기서는 과급에 적용되는 과급기의 종류와 과급 성능 특성 등에 대하여 살펴보고 과급기관의 성능에 대하여 다루기로 한다.

  • PDF

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System (FGR 시스템 동력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-whan;Jung, Kwong-ho;Park, Sung-bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.263-273
    • /
    • 2016
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_x$ emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and $NO_x$ emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

A Study on the Combustion Characteristics of Petrochemical Process By-Product (석유화학 공정부산물의 연소특성에 대한 연구)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1578-1584
    • /
    • 2002
  • Combustion stability is one of the most important factors that must be considered in burning of heavy fuel oil, especially low-grade oil. This paper describes the combustion characteristics of petrochemical process by- product in the combustion furnace of heavy fuel oil. Main experimental parameters were combustion load, excess 02, fuel preheating temperature and air/fuel ratio. The capacity of CRF(combustion research facility) used in this study was 1.0 ton/hr and the burner is steam jet type suitable far heavy oil combustion and manufactured by UNIGAS in Italy. The fuel used in this experiment were 0.5 B-C, petrochemical process by-product and 3 kinds of 0.5 B-C/process by-product mixtures. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and particulates were measured with the excess $O_2$ and combustion load. The main purpose of this study is to clarify whether process by-product can be used as a boiler fuel or not in consideration of flame stability and emission properties.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.