• Title/Summary/Keyword: 연소기 성능시험

Search Result 254, Processing Time 0.026 seconds

Test and Evaluation for the Mixing Quality in the Premixer of DLE Combustor (DLE(Dry Low Emission) 연소기 예혼합기의 혼합성능 예측에 대한 시험평가)

  • 우유철;최장수;박동준
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.2-2
    • /
    • 1998
  • 현대우주항공(주)가 미국의 AlliedSignal사와 함께 국제 공동 개발중인 10MW급의 ASE120 엔진은 항공용 엔진을 산업용으로 개조한 개조형 엔진으로서 희박 예혼합 예기화(Lean Premix prevaporization) 방식의 연소기를 쓰고 있다. 이 연소기는 연소에 관여하는 공기량을 부하에 따라 가감하여 일정 공연비를 유지하는 air staging법을 사용하고 있으며 이로써 연소화염온도를 일정치로 조절하여 연소중 생성되는 유해가스의 양을 목표치 이하로 제어한다. 연소화염온도 설계치는 2912$^{\circ}$F이며 배기가스 발생량은 NOx, CO모두 궁극적으로 10ppmv 이하를 목표로 하고 있다. 이러한 건식 저 배기가스(Dry Low Emission) 연소기가 그 역할을 다하기 위하여는 양호한 혼합기를 확보하는 것이 선결 문제이다. 본 연구소에서는 두 개의 혼합기(mixing can)가 180$^{\circ}$ 간격으로 환형 연소기(annular type)에 접선 방향으로 설치되어 대칭을 이루고 있고 혼합기의 혼합성능을 측정하기 위하여 제작된 시험장치에는 하나의 혼합기만을 쓰고 있다.

  • PDF

Combustion Performance of a Fullscale Liquid Rocket Thrust Chamber (실물형 액체로켓 연소기 지상 연소 성능 결과)

  • Seo Seong-Hyeon;Kim Jong-Gyu;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok;Lee Soo-Yong;Cho Kwang-Rae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.235-239
    • /
    • 2005
  • A 30-tonf-class fullscale thrust chamber for the application to a LEO SLV has been combustion tested over the wide ranges of a mixture ratio and a chamber pressure. The thrust chamber designed for an open cycle engine with a turbopump was tested with a ablative combustion chamber instead of a regenerative chamber to first evaluate its performance and function. The test results revealed stable combustion characteristics. The hardware survived the harsh environment and showed very sound functional characteristics. The estimated combustion efficiency of the chamber turned out to be 95% and a specific impulse at sea level was estimated as 254sec, which are comparable to or above the predicted design values.

  • PDF

Steady & Pulse Mode Fire Tests of Hydrazine Thrusters (단일 하이드라진 추력기 연소시험 성능평가)

  • 이성택;이상희;최영종;류정호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.31-31
    • /
    • 1998
  • 위성체의 보조추진시스템은 임구궤도까지의 궤도진입 및 임무궤도상에서의 속도 또는 자세제어에 필요한 임펄스를 제공한다. 단일하이드라진 추력기는 하이드라진(H$_2$H$_4$)과 자발적 촉매(Shell 405)의 발열 및 흡열 열분해 반응에 의해 발생하는 질소($N_2$), 수소(H$_2$), 암모니아(NH$_3$), 혼합가스를 노즐을 통해 방출하므로써 요구되는 impulse를 얻는다. 단일하이드라진 추력기 설계는 주입기, 촉매대, 노즐과 기타 설계 형태에 따른 다지관, 링, 스크린, 지지판 등의 부수적인 부품으로 구성된다. 추력기 제작 과정은 크게 piece-parts 기계가공, HEA(Head End Assembly)와 TCA(Thrust Chamber Assembly)로 구성되고 각 세부공정마다 전수시험 및 검사를 가진다. 연소시험설비는 최소 모사진 공 수준이 고도 100,000 ft(8.4 torr)를 만족시킬 수 있는 진공설비, 시험제어부, 성능변수 측정 및 처리부, 추진제 가압 공급부, 기타 환경 안전 및 부대 설비로 구성된다. 추력기 연소성능시험 절차는 추진제 충전 및 오염 여부 표본 검사, 가압 및 공급 라인 이상여부 확인, 추력기 장착, 추진제 가압 및 공급, 시험장치 보정, 진공 모사 및 연소성능시험, data 처리 등으로 구성된다.

  • PDF

The Design and Hot-firing tests of a Water-cooled High Pressure Sub-scale Combustor (물냉각 고압 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • A 3-tonf-class high pressure sub-scale combustor was designed and manufactured to study the performance improvement of combustor. The combustor consists of a combustion chamber with film cooling, thermal barrier coating and water cooling channels to prevent thermal demage of the hardware and an injector head with 37 coaxial swirl injectors. Hot-firing tests were carried out at the design point with varying flow rate for film cooling. The test result revealed that the increase of film cooling flow rate decreases the combustion performance, but in the cases of similar film cooling flow rates, the combustion performance is dependent on the mixture ratio of main injector excluding the film cooling flow rate.

Design of Compressed Gas Supply System for Combustion Chamber Test Facility (연소기 연소시험설비 고압가스 공급시스템 설계)

  • Chung, Yonggahp;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2014
  • To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The CCTF is the test facility to develop the combustor of rocket engine, which uses liquid oxygen as a oxidizer and kerosene as a fuel. Present paper introduces the detailed design results of compressed gas supply system of CCTF, which is planned to be installed at Naro Space Center.

A Design of High Pressure Sub-scale Combustor and the Assessment of Combustion Efficiency (고압 축소형 연소기의 설계 및 연소효율 평가)

  • Lee, Kwang-Jin;Kim, Hong-Jip;Ryu, Chul-Sung;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • This paper is related to a design of high pressure sub-scale combustor with regenerative reeling. As a previous step for the evaluation of thermal heat flux, a similar combustor with cooling water was manufactured. Design conditions with high combustion efficiency and cooling performance were verified through the hot firing tests of the water-cooled high pressure combustor. Finally the regeneratively cooled high pressure combustor has been designed based on these data. After manufacturing it, its practical utility will be tested and verified through hot firing tests.

  • PDF

Ignition Characteristics of Combustion Chamber with $LO_X$ Lead Cyclogram for Liquid Rocket Engine (액체로켓엔진 연소기 산화제 선공급 Cyclogram에 의한 점화특성)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hhyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-142
    • /
    • 2008
  • Ignition characteristics of combustion chamber with LOx lead cyclogram for liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Cold flow test to determine the filling time of propellant for cyclogram with LOx lead supply, ignition test to check the ability to ignite starting fuel from the ignitor, low pressure combustion test to check the propagation of flame into main fuel-oxidizer mixture from starting fuel and the main combustion stage, and design point combustion test to check the combustion performance were performed. Ignition and combustion tests with LOx lead supply were successfully performed and the stable cyclogram of start sequence for combustion chamber was developed.

  • PDF

Construction of a High-Altitude Ignition Test Facility for a Small Gas-turbine Combustor (소형 가스터빈 연소기 고공환경 점화 시험 설비 구축 및 검증 실험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Kim, Ki-Woo;Kim, Bo-Yean;Ko, Young-Sung;Kim, Sun-Jin;Kim, Hyung-Mo;Jung, Yong-Wun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • A small high altitude test facility has been developed to investigate ignition performance of a small gas-turbine combustor under high altitude conditions. Supersonic diffusers and a heat exchanger were used to perform a low pressure and a low temperature condition, respectively. Experimental results showed that the low pressure environment could be controlled by upstream pressure of primary nozzle flow and low temperature environment by mixture ratio of cooled air and ambient air. Ignition performance tests were performed to verify the performance of the facility under simulated high altitude conditions. Conclusively, it was proven that the test facility could be used for ignition performance test of a small gas-turbine combustor under high altitude condition of approximately 6,100m.

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.

A Correction Method for Operating Mode Analysis of Gas Generator Cycle Liquid Propellant Rocket Engine (가스발생기 사이클 액체로켓엔진작동 모드 해석의 보정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Chung, Enhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-110
    • /
    • 2018
  • Operating mode analysis of a liquid propellant rocket engine(LRE) is a crucial tool through the development of an engine. The operating mode analysis of an engine based on a collection of the acceptance tests of components shows discrepancies when compared to the test results. We propose a correction method for performance parameters to develop an engine analysis model for the gas generator cycle of an LRE. In order to simulate engine behavior, the performance parameters for the analysis model are tuned based on the test results of the 75tf engine of KSLV-II.