• Title/Summary/Keyword: 연소기 리그시험

Search Result 13, Processing Time 0.017 seconds

CFD Simulation of Non-reacting and Reacting Flows for a Gas Turbine Combustor Firing Biogas (바이오 가스터빈 연소기의 비반응장과 반응장의 3차원 유동해석)

  • An, Yun-Ho;Nam, Sam-Sik;Choe, Jin-Hoon;Im, Ji-Hyuk;Kim, Ho-Keun;Chun, Jae-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.439-444
    • /
    • 2011
  • Doosan Heavy Industries & Construction Co., Ltd. has been recently developing the gas turbine engine using the biogas as fuel. This paper describes the non-reacting and reacting flow analysis of the combustor which is one of the main components in gas turbine engine. Through CFD analysis, investigation has been performed to evaluate the primary factors for aerodynamic design and to predict combustor behaviors during operation with various fuel distribution ratios. The calculation results are compared with rig test data, which reveals that CFD predictions such as pressure loss, air distribution ratio, and recirculation flow are quite reliable. The trend of NO formation was similar with the test, except the low fuel distribution ratio.

  • PDF

An Experimental Study on the Spray Characteristics of a Rotating Fuel Nozzle of a Slinger Combustor for Different Flow Rates and Rotating Speeds (슬링거 연소기 회전연료노즐의 유량과 회전수에 따른 분무특성에 대한 실험적 연구)

  • Shim, Hyeon-Seok;Bae, Jonggeun;Kim, Jupyoung;Kim, Shaun;Kim, Donghyun;Ryu, Gyongwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.59-70
    • /
    • 2021
  • An experimental study was conducted to observe the spray characteristics for different flow rates and rotating speeds of a rotating fuel nozzle of a slinger combustor. The water spray ejected from the nozzle orifice was visualized using a high-speed camera and a light source. It was confirmed that the atomization was improved, as the flow rate decreased and rotating speed increased. The characteristic maps for the spray characteristics and performance parameters showed that the aerodynamic Weber number and the liquid-air momentum flux ratio were associated with the liquid primary breakup, and the liquid-air momentum flux ratio and Rossby number were closely correlated with the liquid ejection mode.

Development of Induction Brazing System for Sealing Instrumentation Feedthrough Part of Nuclear Fuel Test Rig (핵연료조사리그 계장선 통과부위의 밀봉을 위한 유도 브레이징 시스템 개발)

  • Hong, Jintae;Kim, Ka-Hye;Heo, Sung-Ho;Ahn, Sung-Ho;Joung, Chang-Young;Son, Kwang-Jae;Jung, Yang-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1573-1579
    • /
    • 2013
  • To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and $300^{\circ}C$ respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.