• Title/Summary/Keyword: 연성 모멘트 골조

Search Result 58, Processing Time 0.021 seconds

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Over-Strength of Low-Rise RC Frame in Low Seismic Zone (약지진동 지역의 저층 RC 골조의 초과강도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.9-18
    • /
    • 1999
  • The seismic over-strength factor Ω is evaluated for 4-story reinforced concrete buildings in Korea, which has low seismic intensity. For this study, the seismic load suggested in' Aseismic guideline research- phase ll' (in Korea) is used. When 3D study-models are designed, span length and bay number are varied and accidental torsional moment is considered. And the models are analyzed by push-over analysis, in which external and internal frame are connected by rigid-link. As a result of numerical experiments, Ω is increased as the bay number or span length is increased. Because, by the including of accidental torsional moment in designing process, the increased ratio of strength of external columns is larger than the increased ratio of span length or bay number. And this makes the failure mode of model closer or strong-column and weak-beam mechanism.

  • PDF

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향)

  • Lee, Cheol-Ho;Jeong, Sang-Woo;Kim, Jin-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.337-348
    • /
    • 2003
  • 본 연구는 8개의 RBS (reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 본 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험체는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 본 연구의 제한된 실험자료 및 접합부에서 요구되는 바람직한 거동기준을 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.

  • PDF

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.