• Title/Summary/Keyword: 연성도 내진설계

Search Result 204, Processing Time 0.024 seconds

Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility (변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Until recently Korea is considered to be immune from the earthquake hazard because it is located for away from the active fault. However, we have noticed that recent strong earthquakes inflicted enormous losses on human lives and nation's economy all over the world. Hence, there has been raised the importance of the earthquake resistant design for various infrastructures. In this research, new methodologies for the seismic design and performance assessment of reinforced concrete(RC) bridge pier were proposed from experimental results of 82 circular RC bridge piers and 54 rectangular RC bridge piers tested in domestic and aboard. New seismic design method was based on the concept of the limited ductile design, which could be practically used for low or moderate seismic regions like Korea. Further study for the seismic safety of RC bridge piers was carried out to enhance the seismic performance of aged RC bridge piers, which were designed and constructed before implementing the 1992 seismic design provision in Korea. New formula for the seismic performance assessment of RC bridge piers was proposed and practically used for the decision on the need of repair and retrofit of many aged RC bridge piers.

Earthquake Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.25-34
    • /
    • 2003
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, estimation of energy dissipation capacity of RC structures depends on empirical equations which are not sufficiently accurate, On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls was developed. In determination of earthquake load, the proposed design method can address variations of energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement, The proposed design method was compared with the current performance-based design methods. The applicability of the proposed method was discussed.

Seismic Performance of Hollow Rectangular Precast Segmental Piers (프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능)

  • Lee, Jae-Hoon;Park, Dong-Kyu;Choi, Jin-Ho;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.705-714
    • /
    • 2012
  • Precast reinforced concrete bridge columns with hollow rectangular section were tested under cyclic lateral load with constant axial force to investigate its seismic performance. After all the precast column segments were erected, longitudinal reinforcement was inserted in the sheath prefabricated in the segments, which were then mortar grouted. Main variables of the test series were column aspect ratio, longitudinal reinforcement ratio, amount of lateral reinforcement, and location of segment joints. The aspect ratios were 4.5 and 2.5, and the longitudinal steel ratios were 1.15% and 3.07%. The amount of lateral reinforcement were 95%, 55%, 50%, and 27% of the minimum amount for full ductility design requirements in the Korean Bridge Design Code. The locations of segment joints in plastic hinge region were 0.5 and 1.0 times of the section depth from the bottom column end. The test results of cracking and failure mode, axial-flexural strength, lateral load-displacement relationship, and displacement ductility are presented. Then, safety of the ductility demand based seismic design in the Korean Bridge Design Code is discussed. The column specimens showed larger ductility than expected, because buckling of longitudinal reinforcing bar was prevented due to confinement developed not only by transverse steel but also by sheath and infilling mortar.

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

Seismic Retrofit of Existing RC Structure Using Hysteretic Dampers (이력댐퍼를 이용한 기존 RC구조물의 내진보강)

  • Choe, Seon-Yeong
    • Computational Structural Engineering
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • 준공 후 상당한 시간이 지나 내진설계가 되지 않았거나 내진상세가 이루어지지 않은 건물의 부족한 내진성능을 보완하기 위한 방법의 하나로 좌굴이 제한된 가새형 댐퍼를 적용할 수 있다. 이 방법을 적용할 경우, 기존 내진보강법의 불확실성을 줄일 수 있었음에도 불구하고, 댐퍼의 설계과정이 복잡하여 실무에 적용하기 어려웠다. 그러나 본 원고에서는 강성과 강도개념을 적용한 댐퍼의 설계법을 적용함으로써, 실무에서 쉽게 적용할 수 있도록 하였다. 준공된 지 16년이 지난 비틀림 비정형 건물에 대한 내진성능을 평가한 후, 가새형 댐퍼로 보강한 결과는 다음과 같다. (1) 일방향해석결과 나타난 골조별 하중-지붕변위의 관계를 이용하여, 연약골조의 강성을 강한 골조의 강성과 일치시키고, 이 강성비로부터 댐퍼가 부담하는 최적의 내력비율을 정하여 내진보강을 수행한 결과, 가새를 설치한 방향으로는 가새형댐퍼가 비틀림 방지와 연성증대효과를 구조물에 부여하여 성능이 획기적으로 증가하였다. 또한, 그 가새의 직각방향 하중에 대해서도 가새를 설치함으로써 비틀림 강성이 증가하고, 가새와 코어벽체가 인장과 압축으로 횡력에 저항하여 횡저항 성능이 증가하였다. (2) 내진성능이 부족한 비틀림 비정형 건물의 내진성능을 증진시키기 위해 가새형 댐퍼를 적용함에 있어, 댐퍼의 강성을 이용하여 구조체의 비틀림 거동을 최소화하고, 연성을 증진시키는 방법을 체택할 경우, 실무자들이 보다 쉽게 적용할 수 있으면서 그 효과도 상당히 클 것으로 기대된다.

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges (일반도로교의 내진해석모델 개발)

  • 국승규;김판배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • The structural safety required in general design is to be proved with safety factors provided for structural members in elastic range. But, for the safety requirement in the earthquake resistant design, a specific ductile failure mechanism in plastic range should be verified according to the structural configuration. Therefore such verifications should be done in the preliminary design stage by comparing various design alternatives. In the main design stage only a confirmation of the ductile failure mechanism is required. In this study typical roadway bridges are selected and analysis models are presented for the preliminary and main design. For the two models, vibration periods and mode shapes are compared and the multi-mode spectrum method is applied to determine failure mechanisms. The failure mechanisms obtained with the two models are compared to check the properness of the model used for the preliminary design, which may well be used as an earthquake resistant analysis model in practice.

Displacement Ductility Evaluation of Earthquake Experienced RC Bridge Piers with 2.5 Aspect Ratio (지진을 경험한 형상비 2.5 RC 교각의 내진 변위 연성도 평가)

  • 정영수;박창규;이은희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • For the construction of PC bridge piers the implementation of 1992 seismic provisions, longitudinal steels were practically lap-spliced in the plastic hinge region. Experimental investigation was conducted ductility of evaluate the seismic earthquake-experienced reinforced concrete columns with 2,5 aspect ratio. Six test specimens were mode with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=0.1f$\_$ck/A$\_$g/. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that PC bridge piers with lap-spliced longitudinal steels appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.

Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement (횡철근에 의해 횡구속된 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • The basic concept of seismic design is to attain the ductility required in a design earthquake. This ductility can be obtained by providing sufficient lateral confinements to the plastic hinge regions of columns. The most cost-effective design might be derived by determining the proper amount of lateral confinement using a stress-strain relationship for confined concrete. Korean bridge design code requires the same amount of lateral confinement regardless of target ductility, but Japanese design code provides the stress-strain relationship of the confined concrete to determine the amount of lateral confinement accordingly. While design based on material characteristics tends to make the design process more involved, it makes it possible to achieve cost-effectiveness, which is also compatible with the concept of performance-based design. In this study, specimens with different numbers of lateral confinements have been tested to investigate the characteristics of the stress-strain relationship. Test results were evaluated, using several empirical equations to quantify the effects.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.