• Title/Summary/Keyword: 연삭 휠

Search Result 47, Processing Time 0.024 seconds

Evaluation of Grinding Characteristics in Radial Direction of Silicon Wafer (실리콘 웨이퍼의 반경 방향에 따른 연삭 특성 평가)

  • Kim, Sang-Chul;Lee, Sang-Jik;Jeong, Hae-Do;Lee, Seok-Woo;Choi, Heon-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.980-986
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive, the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, Ist, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the effect of the wheel path density and relative velocity on the characteristic of ground wafer in in-feed grinding with cup-wheel. It seems that the variation of the parameters in radial direction of wafer results in the non-uniform surface quality over the wafer. So, in this paper, the geometric analysis on grinding process is carried out, and then, the effect of the parameters on wafer surface quality is evaluated

  • PDF

Profile Simulation in Mono-crystalline Silicon Wafer Grinding (실리콘 웨이퍼 연삭의 형상 시뮬레이션)

  • Kim Sang Chul;Lee Sang Jik;Jeong Hae Do;Choi Heon Zong;Lee Seok Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

Profile Simulation in Mono-crystalline Silicon Wafer Grinding (실리콘 웨이퍼 연삭의 형상 시뮬레이션)

  • 김상철;이상직;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.98-101
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive. the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, 1st, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the flatness of the ground wafer. Generally, the ground wafer has concave profile because of the difference of wheel path density, grinding temperature and elastic deformation of the equiptment. Tilting mathod is applied to avoid such non-uniform material removes. So, in this paper, the geometric analysis on grinding process is carried out, and then, we can predict the profile of th ground wafer by using profile simulation.

  • PDF

A Study on the Surface Grinding using the Machining Center (II) (머시닝센터를 이용한 평면 연삭가공에 관한 연구 (II))

  • Lee, S. M.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.880-883
    • /
    • 2000
  • Temperature generated in the workpiece during grinding process can cause thermal damages. Therefore it is important to understand surface temperature generated during grinding process. In this paper, a theoretical and experimental investigation were performed for the grinding temperature. Grinding experiments were performed in machining center using vitrified bonded CBN cup-type wheel. The surface temperature was measured using thermocouple and calculated through a model of the partition of energy between wheel and workpiece. The residual stress and hardness of ground surface were measured. The experimental results indicate that the surface temperature was in good agreement with theoretical ones. Residual stress and hardness of ground surface were more affected by the change of table speed than the depth of cut.

  • PDF

Determination of Diamond Wheel Life in Ceramic Grinding (세라믹재 연삭시 다이아몬드 휠의 수명 판정)

  • 임홍섭;유봉환;공재향;김홍원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • In order to investigate the characteristics of diamond wheel grinding of ceramic materials, grinding resistance, surface roughness of ground surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of $Al_2O_3$, cutting edge ratio is bigger than that of $ZrO_2$ and $Si_3N_4$. That's because $Al_2O_3$ has a characteristic of low fracture toughness and bending stress.

A Study on the Determination of Diamond Wheel Life in Ceramic Grinding (세라믹 연삭에서 다이아몬드 휠의 수명 판정에 관한 연구)

  • 임홍섭;유봉환;소의열;이근상;사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.308-313
    • /
    • 2002
  • In order to investigate the characteristics of grinding and diamond wheel grinding ceramic materials, grinding resistance, surface roughness of worked surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of A1$_2$O$_3$, cutting edge ratio is begger than that of ZrO$_2$and Si$_3$N$_4$. That's because A1$_2$O$_3$has a characteristics of low fracture toughness and bending stress.

  • PDF

ELID characteristics of internal grinding wheel by using M/C (M/C에 사용되는 내면연삭 휠의 ELID 특성)

  • Kim, S. H.;Bang, J. Y.;Ji, H. G.;Choi, H.;lee, J. C.;Cheong, S. H.;Jae, T.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.999-1002
    • /
    • 1997
  • In this study, in order to set ELID conditions in the internal grinding wheel, the characteristics with the variations of grit size, output voltage and peak current were examined by using conventional machining center(M/C) equipped with electrolytic in-process dressing(EL1D). The initial working voltage was lowered and the working current was high with increasing grit size. The insulating layer thickness increased, as the final voltage increased with the output voltage and peak current. The initial wear rate of the wheel machined with ELID were measured indirectly by using surface roughness tracer. The initial wear rate of the wheel with ELID increased along with high grit size. In case that the grit size with ELID was low, the output voltage and peak current had to be increased to increase the insulating layer thickness. In case of the high grit size, the output voltage and the peak current were established low, which made the insulating layer thickness decreased.

  • PDF