• Title/Summary/Keyword: 연마 입자

Search Result 196, Processing Time 0.027 seconds

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

A Closer Look at the Effect of Particle Shape on Machined Surface at Abrasive Machining (입자연마가공에서의 입자 형상의 영향에 대한 고찰)

  • Kim, Dong-Geun;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Despite the increasing need of nanometer-scale accuracy in abrasive machining using ultrasmall particles such as abrasive jet and chemical mechanical polishing(CMP), the process mechanism is still unknown. Based on the background, research on the effects of various process parameters on the machined surface at abrasive machining was motivated and performed by using finite element analysis where the effect of slurry fluid flow involved. The effect of particle shape on the machined surface during particle-surface collision was discussed in this paper. The results from FEA simulation revealed that any damage or defect generation on machined surface by the impact may occur only if the particle has enough impact energy. Therefore, it could be concluded that generation of the defects and damage on the wafer surface after CMP process was mainly due to direct contact of the 3 bodies, i.e., pad-particle-wafer.

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

Planarization & Polishing of single crystal Si layer by Chemical Mechanical Polishing (화학적 기계 연마(CMP)에 의한 단결정 실리콘 층의 평탄 경면화에 관한 연구)

  • 이재춘;홍진균;유학도
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.361-367
    • /
    • 2001
  • Recently, Chemical Mechanical Polishing(CMP) has become a leading planarization technique as a method for silicon wafer planarization that can meet the more stringent lithographic requirement of planarity for the future submicron device manufacturing. The SOI(Silicon On Insulator) wafer has received considerable attention as bulk-alternative wafer to improve the performance of semiconductor devices. In this paper, the objective of study is to investigate Material Removal Rate(MRR) and surface micro-roughness effects of slurry and pad in the CMP process. When particle size of slurry is increased, Material Removal rate increase. Surface micro-roughness is greater influenced by pad than by particle size of slurry. As a result of AM measurement, surface micro-roughness was improved from 27 $\AA$ Rms to 0.64 $\AA$Rms.

  • PDF

Ultraprecision polishing for micro parts using electric polarization effect of abrasive particles (연마입자의 전기적 분극성을 이용한 초정밀연마기술)

  • 이승환;김욱배;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.227-230
    • /
    • 2002
  • New polishing technique for small parts has been tried out using the principle of particle electromechanics. Common fine abrasives such as alumina, diamond, silicon carbide are dielectric materials which are polarized under an electric field, and a non-uniform electric field makes abrasive particles translate along the field line. Using this principle, We make abrasive particles aggregate in the vicinity of the micro tool which is fir the surface finishing of a small part without contact with it. The behavior of particles is optically measured, and the machined depth of glass is examined.

  • PDF

Magnetorheological Finishing (자성유체를 이용한 연마)

  • 신영재;이응숙;황경현;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.775-778
    • /
    • 2000
  • Magnetorheological Finishing(MRF) is a newly developed and recently commercialized for finishing optical components. The magnetorheological fluid consists of a water based suspension of carbonyl iron, nonmagnetic polishing abrasives, and small amounts of stabilizer. Theoretical analysis of MRF, based on Bingham lubrication theory, is illustrated and a correlation between surface shear stress on the workpiece and material removal is obtained.

  • PDF

Effect of Chemical Mechanical Cleaning(CMC) on Particle Removal in Post-Cu CMP Cleaning (구리 CMP 후 연마입자 제거에 화학 기계적 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1023-1028
    • /
    • 2009
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-step CMP consists of Cu and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the chemical mechanical cleaning(CMC) is performed various conditions as a cleaning process. The CMC process combined mechanical cleaning by friction between a wafer and a pad and chemical cleaning by CMC solution consists of tetramethyl ammonium hydroxide (TMAH) / benzotriazole (BTA). This paper studies the removal of abrasive on the Cu wafer and the cleaning efficiency of CMC process.

Effect of buffing on particle removal in post-Cu CMP cleaning (구리 CMP 후 연마입자 제거에 버프 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1880-1884
    • /
    • 2008
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-steop CMP consists of Cu CMP and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the buffing is performed various conditions as a cleaning process. The buffing process combined mechanical cleaning by friction between a wafer and a buffing pad and chemical cleaning by buffing solution consists of tetramethyl ammonium hydroxide (TMAH)/benzotriazole(BTA).

  • PDF