• Title/Summary/Keyword: 연마 로봇 시스템

Search Result 27, Processing Time 0.028 seconds

The study of Mobile Robot using Searching Algorithm and Driving Direction Control with MAV (초소형비행체를 이용한 자율이동로봇의 경로탐색 및 방향제어에 관한 연구)

  • 김상헌;이동명;정재영;김관형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.105-119
    • /
    • 2003
  • 일반적인 로봇시스템은 자신이 이동해야 할 목표 지점을 자율적으로 생성할 수 없으므로 어떤 다른 시스템의 정보를 이용하여 주변을 탐색하거나 장애물을 인식하고 식별하여 자신의 제어전략을 수립한다. 그러므로 본 논문에서 제시한 시스템은 초소형 비행체를 이용하여 주위 환경과 자율 이동로봇의 위치 정보를 탐색할 수 있도록 시스템을 구성하였다 이러한 시스템의 성능은 로봇이 위치하고 있는 주위의 불완전한 정보로부터 적절한 결론을 유도해 낼 수 있어야 한다. 그러한 비선형적인 문제는 현재까지도 문제 해결을 위해 많은 연구가 진행되고 있다. 본 연구에서는 자율이동로봇의 행동 환경을 공간상의 제약을 받지 않는 비선형 시스템인 초소형 비행체에 극초단파(UHF16채널) 영상장치를 이용하여 호스트 PC로 전송하고 호스트 PC는 로봇의 현재 위치, 이동해야 할 목표위치, 장애물의 위치와 형태 등을 분석한다. 분석된 결과 파라메타는 RF-Module을 이용해서 로봇에 전송하고, 로봇은 그 데이터를 분석하여 동작하게 된다. 로봇이 오동작 또는 장애물로 인해 정확한 목적지까지 도달하지 못할 때 호스트 PC는 새로운 최단경로를 생성하거나 장애물을 회피 할 새로운 전략을 로봇에게 보내준다. 본 연구에 적용한 알고리즘은 초소형 비행체에서 탐지한 불완전한 영상정보에서도 비교적 신뢰도 놀은 결과를 보이는 A* 알고리즘을 사용하였다 적용한 알고리즘은 실험을 통하여 실시간으로 정보를 처리할 수 있었으며, 자율 이동로봇의 충돌회피나 최단 경로 생성과 같은 문제를 실험을 통하여 그 성능과 타당성을 검토하였다.delta}textitH]$를 도출하였다.rc}C$에서 30 ㎫의 압력으로 1시간동안 행하였다 소결한 시편들은 직사각형 형태로 가공하였으며 표면은 0.5$\mu\textrm{m}$의 다이아몬드 입자로 연마하였다. XRD, SEM 및 TEM을 이용하여 상분석 및 미세조직관찰을 행하였다. 파괴강도는 3중점 굽힘 법으로 (3-point bending test) 측정하였다. 이때 시편 하부의 지지 점간의 거리는 30mm, cross-head 속도는 0.5 mm/min으로 하였고 5개의 시편을 측정하여 평균값을 구하였다.ell/\textrm{cm}^3$, 혼합재료 3은 0.123$\ell/\textrm{cm}^3$, 0.017$\ell/\textrm{cm}^3$, 혼합재료 4는 0.055$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 5는 0.031$\ell/\textrm{cm}^3$, 0.015$\ell/\textrm{cm}^3$, 혼합재료 6은 0.111$\ell/\textrm{cm}^3$, 0.020$\ell/\textrm{cm}^3$로 나타났다. 3. 단일재료의 악취흡착성능 실험결과 암모니아는 코코넛, 소나무수피, 왕겨에서 흡착능력이 우수하게 나타났으며, 황화수소는 펄라이트, 왕겨, 소나무수피에서 다른 재료에 비하여 상대적으로

  • PDF

A study on the improvement of performance of polishing robot attached to machining center (머시닝센터 장착형 연마 로봇의 성능 향상에 관한 연구)

  • 조영길;이민철;전차수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1275-1278
    • /
    • 1997
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing pricess polishing robot with 2 degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. this automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, we develop robust controller using real time sliding mode algorithm. To obtain gain parameters of sliding model control input, the signal compression method is used to identify polishing robot system. To obtain an effect of 5 degrees of freedom motion, 5 axes NC data for polishing are divided into data of two types for 3 axis machining center and 2 axis polishing are divided into data of two types for 3 axis machining center and 2 axis polishing robot. To find an efficient polishing condition to obtain high quality, various experiments are carried out.

  • PDF

Development of User Friendly Integrated Program and Teaching System for Automatic Polishing Robot System (자동 연마 시스템의 사용자 지향형 통합 프로그램 및 자동 교시 시스템 개발)

  • 고석조;이민철;이만형;안중환;김성한;이돈진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.123-123
    • /
    • 2000
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface. The polishing system is controlled by a PC-NC controller. And, to easily onerate the developed polishing system, this stud)r developed a integrated program in the Windows environment. This program consists of 4 modules: polishing module, a graphic simulator, a polishing data generation module, and a teaching. Also, the automatic teaching system was developed to easily obtain a teaching data. The developed teaching system consists of a three dimensional joystick and a proximity sensor. In order to evaluate stability of the driving program and the leaching system, polishing experiments of the die of saddle shape were carried out.

  • PDF

The Development of Automatic Tool Change System for Polishing Robot and Windows-Environment Integration Program for Application (연마 로붓용 자동공구교환장치와 Windows환경에서의 통합용 프로그램 개발)

  • Park, Sang-Min;An, Jong-Seok;Song, Moon-Sang;Kim, Jae-Hee;Yoo, Bum-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.147-154
    • /
    • 2003
  • An effective die-polishing robot system is developed. ATC (Automatic Tool Change), tool posture angle control, and robot program for polishing application are developed and integrated into a robotic system that consists of a robot, pneumatic grinding tool, and grinding abrasives (papers and special films). ATC is specifically designed to exchange whole grinding tool set for complete unmanned operation. A tool posture angle control system is developed for the tools to maintain a specified skew angle rather than right angle on the surface for best finishing results. A PC and the robot controller control ATC and tool posture angle. Also, there have been more considerations on enhancing the performance of the system. Elastic material is inserted between the grinding pad and the holder for better grinding contact. Robot path data are generated automatically from the NC data of previous machining process.

Development of An User-Friendly Integrated Program and Teaching System for Automatic Polishing Robot System (자동 연마 시스템의 사용자 지향형 통합 프로그램 및 자동 교시 시스템 개발)

  • Go, Seok-Jo;Lee, Min-Cheol;Lee, Man-Hyeong;An, Jung-Hwan;Jeon, Cha-Su;Lee, Don-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.334-343
    • /
    • 2001
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. Some workers tend to gradually avoid the polishing work because of the poor environment caused by dust and noise. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface. The polishing system is controlled by a PC-NC controller. To easily operate the developed polishing robot system, this study developed an integrated program in the Windows environment. This program consists of four modules: the polishing module, the graphic simulator, the polishing data generation module, and the teaching module. Also, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. The joystick is used to simultaneously drive the polishing system to an arbitrary orientation and the proximity sensor is used to obtain teaching points precisely. Also, to evaluate the stability of the driving program and the teaching system, polishing experiments of a die of saddle shape were carried out.

  • PDF

Development of off-line Robot Task Programming System for Polishing Process of Sculptured Surfaces (자유곡면의 연마공정을 위한 오프라인 로봇작업 프로그래밍 시스템의 개발)

  • Chung, Seong-Chong;Kuk, Keum-Hwan;Choi, Gi-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.84-94
    • /
    • 1991
  • In order to achieve high accuracy of teaching and increase productivity using industrial robots in polishing process of dies, an off-line task programming system was developed on IBM-PC/386 under WINDOWS 3.0 operating system. The internal structure and the machematical basis of CAMPoli are described. Surface modeling technique of polishing dies with sculptured surfaces is introduced by poing data interpolation methodology through the use of CL-data transmitted from conventional CAM system. Tool selection, polishing speed, polishing pressure and kinds of tool motions can be determined and selected by user specified polishing variables. Task creation and verification of polishing path via computer graphics simulation of polishing tool can be done by the menu- driven function of CAMPoli system. Post-processing module is attached to generate robot language. Some simulation results are provided as verification means of the system.

  • PDF

Development of Monitoring System for Remote Management of Polishing Robot (연마 로봇의 원격 관리를 위한 모니터링 시스템 개발)

  • 고석조;이민철;홍창우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.625-631
    • /
    • 2002
  • In the previous study, a polishing robot system was developed to automate the polishing process and to cope with the shortage of skilled workers. This polishing robot system has several advantages: reduced time for setting polishing work, decreased labor costs, effective operation, continuous polishing work without an operator, improved machine accuracy, and the ability to polish a free curved surface die. However, still the problem remains that a worker must stay to monitor the polishing process in the poor working conditions for a long time. Nowadays some advanced manufacturing companies need to find a way to check the performance of their production equipments and plants from remote sites. Thus, this study constructed the communication network and developed the monitoring programs (a servo program and a client program) to operate the polishing robot from remote sites. Using these programs, workers are able to monitor and control the polishing robot on the web page, in any place where internet service is possible. To guarantee a stable operation in spite of a variable computer operating environment, the monitoring system is implemented in Java. The experimental results showed that the developed monitoring programs provided a stable communication.

  • PDF