• 제목/요약/키워드: 연료 증발시간

검색결과 16건 처리시간 0.021초

급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구 (Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis)

  • 최상규;최연석;김석준;한소영
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.646-652
    • /
    • 2016
  • 바이오매스는 최근 화석연료의 고갈 및 지구온난화 등의 문제에 대응하기 위한 신재생에너지원으로 많은 관심을 받고 있다. 바이오오일은 폐목재, 농업 및 임업 부산물 등의 바이오매스로부터 급속열분해 과정을 통하여 생산되는 액체연료이다. 바이오오일은 일반적인 석유 계통의 연료에 비하여 점도가 매우 높고 고체상의 불순물을 포함하고 있어 버너 적용시 스프레이 분무 특성이 저하된다. 또한, 바이오오일은 셀룰로오스, 헤미셀룰로오스, 리그닌으로부터 유래되는 수백 종류의 화학종들로 이루어져 있어 일반적인 액체연료와는 액적의 증발 특성이 뚜렷하게 구분된다. 본 연구에서는, 바이오오일의 구성 성분을 아세트산, 레보글루코산, 페놀, 수분으로 단순화하여 액적의 증발 특성에 관한 수치해석적 연구를 수행하였다. 다양한 주위공기 온도, 액적의 초기 지름, 에탄올 혼합 비율에 대하여 액적의 증발 특성을 비교하였다. 주위공기 온도가 높아질수록 바이오오일 액적의 증발 시간은 짧아졌으며, 특히 낮은 온도 범위에서는 증발 시간이 공기온도에 매우 민감하였다. 또한 액적의 지름이 감소할수록, 에탄올 혼합 비율이 증가할수록 증발 시간이 단축됨을 알 수 있었다.

고온벽면에서의 액적연료의 증발 및 착화에 관한 연구 (A Study on the Evaporation and Ignition of Single Fuel Droplet on the Hot Surface)

  • 송규근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.132-137
    • /
    • 2002
  • Recently, impinging spray is used for atomization of diesel engine, but it bring on adhesion of fuel. Therefore, we studied about droplet behavior on high temperature plate changing the size of droplet, surface temperatures, and surface roughness of plate. In this study, We studied to confirm experimentally about mechanism of evaporation and ignition process of single fuel droplet. We observed evaporation time, evaporation appearance and ignition delay time by the photopraphs of 8mm video camera. Experimental results are summarized as follows: 1. The boiling point of fuel affect a evaporation and ignition process. 2. The surface roughness affect a evaporation time. 3. The ignition delay time relate to evaporation characteristic.

농후 연소 가스발생기의 비평형 연소 화학반응 모델링 (Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator)

  • 유정민;이창진
    • 한국항공우주학회지
    • /
    • 제34권7호
    • /
    • pp.89-96
    • /
    • 2006
  • 액체 로켓의 가스발생기의 연소 온도는 터빈 깃의 열 손상을 방지하기 위하여 1,000K 이하로 유지되며 이를 위하여 농후 연소 또는 산화제 과다 연소를 유지한다. 이러한 이유로 연소는 비평형 화학반응이 주로 발생하며 연소반응을 예측하기가 매우 어렵다. 한편 케로신은 여러 가지 탄화수소 연료로 이루어진 혼합연료로 화학반응 메커니즘에 대한 모델이 매우 어려운 실정이다. 본 연구에서는 Dagaut가 개발한 207 화학종, 1592 화학반응 단계를 이용하였으며 완전혼합반응기 연소모델을 적용하여 계산하였다. 계산결과와 실험결과를 비교하여 보면 사용된 화학반응 기구가 검댕 예측을 하지 않고 있음에도 불구하고 계산 결과는 연소가스 온도 뿐 아니라 가스 물성치 등을 매우 잘 예측하고 있음을 확인하였다.

상압에서 부탄올 젤 연료액적의 증발특성 (Evaporation Characteristics of a Butanol Gel-Fuel Droplet in Atmospheric Pressure Condition)

  • 남시욱;김혜민
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.73-80
    • /
    • 2021
  • Evaporation characteristics of single butanol gel fuel were investigated in different mass ratios of gellant and ambient temperatures. Gel fuel was made by adding the pure water and hydroxypropylmethyl cellulose (HPMC) into the 1-butanol. Increase of viscosity was observed when the loading of HPMC increased. The evaporation process of gel droplet could be divided into three stages: droplet heating, micro-explosion and crust formation. Elevation of ambient temperature helped boost the evaporation in all experimental cases, but the effect was mitigated when the mass ratio of HPMC increased. Increase of HPMC weight ratio reduced the evaporation rate.

직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구 (A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell)

  • 위정호;전해수
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.652-659
    • /
    • 1999
  • 메탄을 연료로 한 직접 내부개질형 용융탄산염 연료전지의 anode전극위치에 따른 개질 촉매의 피독 현상을 규명하였다. 수증기-탄소 비를 2.5로 고정시킨 후 운전전압 0.75 V, 전류밀도 $140mA/cm^2$을 유지하면서 24시간 운전중인 연료전지를 정지시키고 anode전극 내, 가스흐름 방향으로 입구, 중간 및 출구 부분에 충전된 촉매를 채취하여 탄소와 전해질 성분인 리튬과 칼륨의 피독 정도를 분석하였고 운전시간 100시간 후, 같은 방법으로 촉매를 분석하였다. 그 결과, 운전시간 24시간 경과 후 촉매의 리튬과 칼륨의 피독량은 입구부에서 0.27 wt%, 중간부에서 0.23 wt% 출구부에서 1.59 wt%로 출구부에 충전된 촉매 피독량이 제일 높았지만 100시간 경과 후 촉매의 피독량은 입구부에서 가장 높았다. 이러한 결과는 직접 내부개질형 연료전지의 성능 모사를 통한 전극 내 위치별 반응속도와 이에 따른 촉매의 역할로 설명이 가능하였다. 전지의 성능 모사 결과 전극 내 메탄-수증기 개질 반응은 입구 부분 30%까지 초기 메탄 유입량의 90%가 반응하여 이 부분에 충전된 촉매가 가장 많이 사용되고 전극반응도 가장 활발하게 일어나 입구부 촉매의 탄소와 전해질 피독량이 높았고 운전 시간에 따른 피독 정도가 가장 빨랐다. 전극 내 출구부는 가장 높은 온도분포를 보이고 있어 상대적으로 전해질 증발이 많아져 운전 초기부터 촉매의 전해질 피독이 빠르게 일어나지만 개질 반응과 전극 반응은 상대적으로 적게 진행되어 촉매의 피독 속도는 크지 않았다.

  • PDF

액적 배열의 증발과 착화에 관한 수치해석적 연구 (Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets)

  • 김충익;송기훈
    • 한국화재소방학회논문지
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 1999
  • 부유중인 분진의 화재 및 용기 또는 파이프의 미세한 균열에서 비산되는 가연성 액체의 분무화재의 위험성은 착화후의 고속 확산과 높은 열방출율로 인하여 매우 높은 것으로 알려졌다. 이에 대한 연구는 주로 실험적으로나 또는 거시적인 관점의 해석으로 제한되어 왔다. 본 연구는 미시적인 관점의 해석으로서 분진 및 분무를 가연성 미세 액적으로 가정하여 그의 증발과 착화에 대하여 연구하였다. 첫 단계로서 일열의 액적 배열을 계산영역으로 하여, 비정상 이차원 보존방정식들을 적용하였다. 수치해석은 일반화된 비직교 좌표계를 사용하였고, 화학반응은 Arrhenius의 법칙에 의하여 반응속도가 제어되는 일단계 반응을 고려하였다. 계산결과는 액적 주위의 온도와 반응물질의 농도분포를 시간에 따라 보여준다. 주위의 산소가 증발하는 액적의 연료와 섞이기 시작하고 착화 조건에 다다르면, 급격한 발열반응이 예혼합된 가스로부터 일어나기 시작한다. 최대온도 영역은 점차적으로 액적 표면으로 이동하며 최대온도는 착화이후 급격히 상승한다. 연료와 산소의 농도는 최대온도 영역 근처에서 최소값을 보인다. 따라서 착화순간에는 예혼합연소의 양상을 띠는 것으로 나타났다. 이후에는 예혼합 가스의 소멸로 확산연소의 양상을 띠게 된다. 액적간의 거리는 중요한 요소로서 멀리 떨어져 있는 경우부터 액적간의 거리가 가까워지면 착화지연 시간이 줄여들어 착화가 빨리 일어나는 것으로 관찰되었다. 또한 착화 후에는 최대온도 영역이 일열의 중심선으로부터 멀어지는 것으로 나타났는데 이것은 중심부근의 산소가 먼저 소모되고 외부로부터의 산소공급도 화염에 의해 차단되어 나타나는 현상이다. 이번 연구로 미세적인 착화현상에 대한 이해를 높이게 되었고 추후 복잡한 배열에 대한 연구도 가능할 것이다.

  • PDF

LNG 벙커링용 이중 단열적용 LNG 저장탱크 열해석 (Thermal Analysis on the LNG Storage Tank of LNG Bunkering System Applied with Double Shield Insulation Method)

  • 정일영;김남국;윤상국
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.1-6
    • /
    • 2018
  • IMO에서 규정하는 LNG 벙커링 선박용 연료 탱크 중 C형 가압탱크는 내외 2중 용기로 구성된 초저온 탱크에 $10^{-2}$ Torr 진공과 펄라이트 단열재가 충전되는 것이다. 그러나 이 단열방식은 LNG 기화량이 하루당 2.0 % 내외로 증발율이 커서 보다 단열효과가 좋은 탱크가 요구되어 진다. 본 연구에서는 내외탱크 사이에 고진공을 적용하고 외부탱크의 내벽체에 중간 단열로 펄라이트 진공단열을 적용하는 단열 방식을 새로이 고안하여 열해석을 수행하였다. 이의 장점으로는 진공 공간의 감소로 고진공 형성 시간을 크게 감소되고, 진공도 $10^{-4}$ Torr 이하에서 하루당 증발율이 0.16 %에 불과한 매우 효율이 높은 탱크 단열방식이 되었다. 만약 현재의 IMO C형 탱크의 진공펄라이트 단열에서 진공이 파괴되는 경우, C형 탱크는 하루당 4.9 %의 증발이 발생하고 새 고안 탱크는 5.23 %로 거의 동일하게 된다.

고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석 (Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes)

  • 장지원;김준범
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.16-22
    • /
    • 2024
  • 고분자전해질막 연료전지는 작동온도가 낮아, 다른 종류의 연료전지에 비해 빠른 시동과 응답 특성을 가진다는 장점이 있다. 시뮬레이션 연구는 비용과 시간 측면에서 이점이 있어 활발하게 연구되고 있다. 본 연구에서는 기존의 수식에 단위전지의 기체확산층에 잔류하는 물의 저항을 추가하여 실제 데이터와 모델데이터를 비교했다. 실험은 25 cm2 단위 전지로 진행됐으며, 1차 임피던스 측정, 활성화, 분극곡선 데이터 획득 후 정지 시간을 0, 10, 60분으로 가지는 샘플로 나눠 실험했다. 이는 기체확산층 내부의 잔류 중인 물이 증발할 시간을 0분, 10분, 60분 부여했다고 볼 수 있다. 휴식기간을 가지지 않는 경우, 같은 전위 및 같은 유량에서 성능 향상의 폭은 큰 차이를 보이지 않았으나, 휴식기간을 가진 막전극 접합체의 경우 임피던스 측정 시 성능 향상이 확인되었다. 저항 감소크기를 과전압으로 바꿔, 연료전지모델에 잔류수가 존재할 경우와 존재하지 않을 경우의 전압 차이를 비교했으며 그 결과로 농도손실이 주를 이루는 고전류밀도 영역의 오차율이 줄어든 것을 확인하였다.

첨가제가 혼합된 미세물분무의 소화성능에 관한 연구 (A Study on the Extinguishing Performance of Water Mist with Additives)

  • 이경덕;신창섭
    • 한국화재소방학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 할론 소화약제는 오존층파괴지수와 지구온난화지수가 높아 환경문제를 야기하며, 이의 대체기술의 일환으로 미세물분무에 대한 관심이 집중하고 있다. 미세물분무에 대한 연구로는 적용화재에 보다 효과적인 소화를 위한 최적의 물입자를 만들려는 연구와 함께 첨가제를 이용하여 미세물분무의 소화성능을 향상시키기 위한 연구가 진행되고 있다. 본 연구는 이전 연구$^{1)}$ 에서 제시한 순수한 미세물분무의 입자크기, 방사분포 및 화염크기에 따른 ethanol과 n-heptane 화염의 진압특성과 소화시간에 대한 연구를 기반으로, 여기에 미세물분무의 물리적 소화성능의 향상과 화학적 소화성능을 부여하기 위해 첨가제를 첨가하였을 때의 성능을 평가하고 최적의 조건을 구하고자 하였다. 실험결과, ethanol panl 화염에 7N3노즐을 4kg/$\textrm{cm}^2$로 방사한 경우 0.3% AFFF와 2.5wt% NaCl를 첨가한 미세물분무는 순수한 미세물분무 보다 27%와 60% 빠른 소화시간을 나타냈다. AFFF의 첨가는 연료표면 위에서 얇은 막을 형성하여 화염으로부터 연료 표면으로 되돌아오는 열을 감소하므로 연료표면에서의 화염온도 감소와 함께 n-heptane 연료의 증발을 감소함으로서 소화가 이루어지는 것으로 판단되며, 또한 알칼리 염인 2.5wt% NaCl을 첨가한 경우 화염면에 알칼리염 결정체가 형성되는 현상이 나타났다.

연료전지 카스켓용 NBR 고무의 산-열 노화 특성과 수명예측에 관한 연구 (A Study on the Life Time Prediction and Acid-Heat aging Property of NBR Rubber for Fuel Cell Gasket)

  • 김미숙;김진학;김석진;김진국
    • Elastomers and Composites
    • /
    • 제42권1호
    • /
    • pp.20-31
    • /
    • 2007
  • 고무의 안정성과 신뢰성 확보를 위해 재료 특성과 수명 평가는 매우 중요하다. 본 연구에서는 연료전지용 고무 가스켓으로 사용되는 황으로 가황한 NBR compound의 수명을 예측하였다. 5, 6, 7 vol% 황산농도에서 120, 140, $160^{\circ}C$ 온도로 각각 3시간에서 600시간까지 가속 노화시험을 하였다. 고무를 황산용액 안에 침지시키기 위해 pyrex glass tube를 사용하였다. 그리고 가열 시간 동안 용액의 증발을 막기 위하여 pyrex glass tube 양쪽 끝을 막았다. 연료전지용 가스켓인 NBR 고무의 수명을 예측하기 위하여 가속 산-열 노화시험 후 물성 실험을 하였으며 산-열 노화시험에서 물리적 특성의 영향을 연구하기 위하여 인장강도, 신장율, 경도, 가교밀도를 측정하였다. 인장강도는 황산농도와 온도가 증가함에 따라서 감소되었는데 이 결과로 Arrhenius 식을 유도하여 수명을 평가하였다.