• Title/Summary/Keyword: 연료 전기

Search Result 1,893, Processing Time 0.039 seconds

Seasonal Change Analysis of Groundwater in Nakdong Riverside Greenhouse Complex Using Groundwater Monitoring (지하수관측을 이용한 낙동강변 시설농업단지 지하수의 계절적 변화 분석)

  • Baek, Mi Kyung;Shin, Hyun Chae;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.283-283
    • /
    • 2020
  • 국가의 논의 타작물 재배 권장 정책과 농한기 수익을 위해서 동절기에도 농사가 가능한 시설농업이 발달했으며, 1990년 초부터 재배면적이 증가하여 2000년에는 10만 ha를 넘어섰고, 2018년에는 80만ha의 규모를 보이고 있다(농사로, 2019). 시설농업단지의 동절기 난방을 위한 에너지원으로 화석연료와 전기열원을 사용하고 있고, 특히 강변의 경우 지하수를 난방 열원으로 사용가능해 수막재배를 이용한 대규모 시설단지가 발달함에 따라 지하수의 이용량이 증가하고, 2015년 농업용 지하수 이용량은 연간 20억 톤에 이른다(GIMS, 2019). 난방이 필요한 동절기에 수막용수를 위한 지하수 이용량이 급증하여 계절적인 수위변화를 보이며, 특히 강변의 대규모 시설농업단지의 지하수의 부족현상이 빈번히 발생하는 실정이다(송성호, 2017). 본 연구지역은 낙동강 하구댐 설치 전만조 시 해수의 유입으로 암반지하수의 심도가 증가할수록 EC가 증가하는 특성을 보이는 곳으로, 지하수의 이용량이 급증하는 동절기에 특히 급격히 증가하여 지하수의 안정적인 수질관리를 위해 염분변화의 관리가 필요한 지역이다. 지하수의 계절적인 변화를 위해 시설농업단지내에 지하수 관측정이 설치되어 관측되고 있으며 본 연구에서는 관측정의 2013년 1월~2019년 1월까지 지하수의 EC변화를 관측하였다. 지하수의 수위(GL.m), 온도, EC를 1시간 주기로 관측하여 계적적인 변화를 분석하였고, EC의 증가가 큰 곳은 심도별로 센서(다중심도)를 설치하여 염도의 변화를 관측하였다. 지하수성분의 지질학적 기원분석을 위한 양음이온 분석을 연 1회 실시하였다. 또한 관측정의 심도별 변화를 알기 위해 동일지역에 충적, 암반 관측정을 따로 설치하고 관측하여 지표수와 지하수의 심도별 영향의 차이를 분석하였다. 동일지역의 관측결과 평균 5m이하의 수위변화를 보이나, 5m 이상의 수위변동을 보이는 관측망은 15년 14개소 17년 19개소로 증가추세를 보이며, 이는 주로 밀집된 시설하우스 단지의 수막재배를 위한 겨울철 지하수 사용량 증가가 원인인 것으로 판단된다. 본 연구지역은 강변지역에 밀집된 시설하우스단지의 동절기 수막재배를 위한 지하수 과다 사용으로 수위급감 및 수량부족현상이 반복되고 있어, 예방과 대책강구를 위해 지표수의 함양과 지하수사용량의 상관관계 분석과 자료축적 및 추가연구를 위한 장기관측이 요구된다.

  • PDF

Effect of Compensation for Thickness Reduction by Chemical Degradation of PEMFC Membrane on Performance and Durability (PEMFC 고분자막의 화학적인 열화에 의한 두께 감소 보정이 성능 및 내구성에 미치는 영향)

  • Sohyeong Oh;Yoojin Kim;Seungtae Lee;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • As the demand for hydrogen electric vehicles for commercial vehicles increases, the durability of PEMFCs must increase more than five times that of passenger cars, so research and development to improve durability is urgent. When the PEMFC membrane electrode assembly (MEA) undergoes chemical degradation, the MEA thickness decreases and pinholes occur. In this study, changes in the performance and durability of the MEA were measured while increasing the clamping pressure of the unit cell after open circuit voltage (OCV) holding, an accelerated chemical degradation experiment. As the clamping pressure increased, the resistance of the polymer membrane and the membrane/electrode contact resistance decreased, improving the I-V performance and reducing the hydrogen permeability. As the hydrogen permeability decreased, the OCV increased. When the pinhole area was removed and the MEA clamping pressure was increased, the hydrogen permeability decreased sharply, confirming that the local degradation has a large effect on the performance and durability of the entire cell. When the pinhole was removed and re-clamping and OCV holding was evaluated, it was confirmed that the durability improved according to the decrease in membrane resistance and hydrogen permeability.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Heating Effect by Electric Radiator in Greenhouse of Chrysanthemum Cultivation (전기 방열기가 국화재배온실의 난방에 미치는 영향)

  • Suh, Won-Myung;Leem, Jae-Woon;Kim, Young-Ju;Min, Young-Bong;Kim, Hyeon-Tae;Huh, Moo-Ryong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • An analysis in heating effects of an electric radiator located in a 1-2W type chrysanthemum (3 cultivars) cultivation greenhouse installed in Gyeongsang National University drew the following conclusions. During the experiment period, the highest, average, and the lowest outside temperatures were in the ranges of $-3.8{\sim}21.3^{\circ}C$, $-5.2{\sim}16.1^{\circ}C$ and $-12.5{\sim}14.4^{\circ}C$, respectively, and the average relative humidity inside and outside the greenhouses were in the ranges of 43.5~98.6% and 35.2~100%, respectively. From mid-December to early February, the lowest outside temperature was recorded as approximately $-5.0{\sim}-10.0^{\circ}C$, which showed that it tended to be relatively lower than the temperatures recorded at the Jinju Meteorological Observatory. During the night, the leaf temperature measured directly under the radiator tended to be higher by $2{\sim}3^{\circ}C$ than that those at the middle point of the radiator, or higher by a negligible amount. In the case of root zone temperature, it was found that there was almost no difference between temperatures of the part directly under and the middle point, and the time when the highest temperature of root zone and other highest temperatures took place showed that there was about a 2-hour delay phenomenon. The total electricity consumption, energy supply and total heating cost during the experiment period were 2,800 kWh, 2,408,000 kcal and 112,000 won, respectively. When diesel, a kind of fossil fuel, was used as heating oil, the total heating cost was around 224,500 won. It was estimated that the total heating cost could be reduced by around 50% if a radiator was used.

A Review on Solution Plans for Preventing Environmental Contamination as the Trend Changes of Cryptocurrency (암호화폐의 트랜드 변화에 따른 환경오염 방지 해결방안에 대한 고찰)

  • Kim, Jeong-hun;Song, Sae-hee;Ko, Lim-hwan;Nam, Hak-hyun;Jang, Jae-hyuck;Jung, Hoi-yun;Choi, Hyuck-jae
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Cryptocurrency, stood out the sharp cost rising of Bitcoin has been spotlighted by means of the solution for stagflation because it is decentralized with an existing currency differently. Especially getting into 4th industrial revolution, technologies using block chain and internet of things have been used in the many fields, and the power of influence is also widespread. Nevertheless like a remark of Elon Musk of Tesla CEO, the problems of environmental contamination for cryptocurrency have been pointed out continuously and the most representative of them is an enormous electric usage as the use of fossil fuels. Also the amount generated of carbon dioxide result in the acceleration of global warming mainly based on the climate changes of earth if the existing mining method is continued. On the other hand, review researches have been conducted restrictively as the connection with environmental contamination as the mining of cryptocurrency. In this study, it intended to review problems for environmental contamination as the diversification of ecological system of cryptocurrency concretely. Upon investigation existing prior documents on the putting recent data first, the mining of cryptocurrency has affected on the environmental contamination conflicting with carbon neutrality as increasement of the electric usage and electronic wastes. And POS method without the mining process appeared, but it had a demerit collapsing a decentralization and then we met turning point on appearing various environmental-friendly cryptocurrency. Finally the appearance of cryptocurrency using new renewable energy acted on the opportunity of the usage maximization of energy storage apparatus and the birth of national government intervention. Based on these results, we mention clearly that hereafter cryptocurrency will regress if not go abreast the value of currency as well as environmental approach.

Prediction of field failure rate using data mining in the Automotive semiconductor (데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구)

  • Yun, Gyungsik;Jung, Hee-Won;Park, Seungbum
    • Journal of Technology Innovation
    • /
    • v.26 no.3
    • /
    • pp.37-68
    • /
    • 2018
  • Since the 20th century, automobiles, which are the most common means of transportation, have been evolving as the use of electronic control devices and automotive semiconductors increases dramatically. Automotive semiconductors are a key component in automotive electronic control devices and are used to provide stability, efficiency of fuel use, and stability of operation to consumers. For example, automotive semiconductors include engines control, technologies for managing electric motors, transmission control units, hybrid vehicle control, start/stop systems, electronic motor control, automotive radar and LIDAR, smart head lamps, head-up displays, lane keeping systems. As such, semiconductors are being applied to almost all electronic control devices that make up an automobile, and they are creating more effects than simply combining mechanical devices. Since automotive semiconductors have a high data rate basically, a microprocessor unit is being used instead of a micro control unit. For example, semiconductors based on ARM processors are being used in telematics, audio/video multi-medias and navigation. Automotive semiconductors require characteristics such as high reliability, durability and long-term supply, considering the period of use of the automobile for more than 10 years. The reliability of automotive semiconductors is directly linked to the safety of automobiles. The semiconductor industry uses JEDEC and AEC standards to evaluate the reliability of automotive semiconductors. In addition, the life expectancy of the product is estimated at the early stage of development and at the early stage of mass production by using the reliability test method and results that are presented as standard in the automobile industry. However, there are limitations in predicting the failure rate caused by various parameters such as customer's various conditions of use and usage time. To overcome these limitations, much research has been done in academia and industry. Among them, researches using data mining techniques have been carried out in many semiconductor fields, but application and research on automotive semiconductors have not yet been studied. In this regard, this study investigates the relationship between data generated during semiconductor assembly and package test process by using data mining technique, and uses data mining technique suitable for predicting potential failure rate using customer bad data.

A Study on the Devitrification of Container Glass with the Amounts of Cullet (유리 용기 생산시 Cullet의 사용에 관한 연구)

  • Noh, Kwang-Hong;Kim, Jong-Ock;Kim, Taik-Nam;Lim, Dae-Young;Park, Won-Kyu;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.199-205
    • /
    • 1998
  • Cullet Quality Control in auto glass bottle factory is the most important in recent days because of the increasing cost of materials in glass bottle. Since the composition of plate glass cullet is similar, the cullet quality using plate cullet in glass bottle factory is easily controlled. In addition to this, the price of plate glass cullet is so low that the cost reduction can be achieved. If the ratio of plate glass cullet and gush is over 25%, the liquidity of glass water become worse, which is caused by different compositions and viscosity of the components. As a results, Furnace bottom temperature becomes low and glass water becomes inhomogeneous. Thus production efficiency of glass bottle becomes low because of increasing devitrification in Dead Corner part in glass melting furnace. Three experimental methods – (1) increasing melting temperature, (2) using Booster, (3) using bubbler – were performed to increase the furnace bottom temperature and glass water homogeneity. The amounts of plate glass cullet was able to increase up to 90%, 70% and 60% without any devitrification using booster, bubbler and the method of glass melting temperature increase from $1480^{\circ}C$ to $1560^{\circ}C$ respectively. It is not possible to increase the glass melting temperature without the reduction of furnace operation time and the increase of fuel cost. The booster process has disadvantage of much electric energy consumption. Since the bubbler process uses physical convection of melting glass based on compression air, the homogeneity of molten glass is not so good as that of booster process but it can reduce the cost of glass bottle.

  • PDF

The Present State of Food Serviee by the Covered Wagon Bars (포장마차 영업실태조사(營業實態調査))

  • Yoon, Eun-Young;Choi, Kyung-Suk;Park, Young-Sook;Mo, Su-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.3 no.2
    • /
    • pp.187-195
    • /
    • 1988
  • In accordance with the rapidly growing number of street food service without a registration, a study was undertaken to determine the present state of food service by the covered wagon bar, through an investigation in Jamwondong, around the south gate market and Kangnam subway station, in Seoul, between July 25th and August 25th of 1987. The survey was comprised of three parts: 1) foodservice operation in covered wagon, 2) personal and food handling hygiene, 3) food behaviors of customers. A total of 54 covered wagon bars, consisting of 51.8% mobile bars and 48.2% non-mobile bars, operating in the above three locations, were investigated. Survey results show non-mobile covered wagon bars to be more popular among persons in their thrities and fourties than among teens or the elderly; also among males than females; among company employees and college students than others. Seventy five percent of the mobile covered wagon bars served snack type foods and others served wine and foods for wine, in contrast to hundred percent of the non-mobile covered wagon bars served wine and foods for wine. The survey found many problems of hygiene, in method of food purchasing, menu planning, food preparation, dish washing treatment of leftovers and water supply, as well as personal hygiene. However, customers prefer the casual and popular atmosphere at the counter of the covered wagon bar. Finally, the study emphasizes a need for better operation of covered wagon bar, improvement of food stuff handling and the way of food services and personal hygiene. A change of the registration system from the illegal operation are urgently needed for better quality food services of covered wagon bars.

  • PDF

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Soybean (Glycine max L.) Production System (콩의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.898-903
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle Inventory) database of soybean production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.10E+00 kg $kg^{-1}$ soybean and it of mineral fertilizer was 4.57E-01 kg $kg^{-1}$ soybean for soybean cultivation. It was the highest value among input for soybean production. And direct field emission was 1.48E-01 kg $kg^{-1}$ soybean during soybean cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 3.36E+00 kg $CO_2$-eq $kg^{-1}$ soybean. Especially $CO_2$ for 71% of the GHG emission. Also of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (92%) and soybean cultivation (7%) for soybean production system. $N_2O$ was emitted from soybean cropping for 67% of the GHG emission. In $CO_2$-eq. value, $CO_2$ and $N_2O$ were 2.36E+00 kg $CO_2$-eq. $kg^{-1}$ soybean and 3.50E-01 kg $CO_2$-eq. $kg^{-1}$ soybean, respectively. With LCIA (Life Cycle Impact Assessment) for soybean production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP was 3.36E+00 kg $CO_2$-eq $kg^{-1}$.