• 제목/요약/키워드: 연료비용

Search Result 440, Processing Time 0.023 seconds

Numerical Study on Performance Improvement by Changing of Fuel Injection Timing of Common Rail Diesel Engine for using Electric Generation for Waste Engine Remanufacturing (폐엔진 재제조를 위한 발전용 커먼레일 디젤엔진의 연료분사 타이밍 변경을 통한 성능향상에 대한 수치해석 연구)

  • Kim, Seung Chul;Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • The common rail diesel engine used in this study is a remanufactured waste engine. The fuel injection timing of the waste engine is set to be suitable for the operating conditions of the vehicle. However, the engine of a generator is operated at a constant speed and mainly at partial load. Therefore, it is necessary to change the fuel injection timing suitable for the power generation engine, and the cost and the time required for such change must be minimized as much as possible. As a result of the analysis, it was confirmed that the fuel efficiency improves according to the fuel injection timing suitable for the engine for the generator, thereby increasing the performance and fuel efficiency.

Basic Experimental Study on the Application of Biofuel to a Diesel Engine (바이오연료의 엔진 적용을 위한 실험적 기초연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1163-1168
    • /
    • 2011
  • Compared with the spark-ignition gasoline engine, the compression-ignition diesel engine has reduced fuel consumption due to its higher thermal efficiency. In addition, this reduction in the fuel consumption also leads to a reduction in $CO_2$ emission. Diesel engines do not require spark-ignition systems, which makes them less technically complex. Thus, diesel engines are very suitable target engines for using biofuels with high cetane numbers. In this study, the spray characteristics of biofuels such as vegetable jatropha oil and soybean oil were analyzed and compared with those of diesel oil. The injection pressures and blend ratios of jatropha oil and diesel oil (BD3, BD5, and BD20) were used as the main parameters. The injection pressures were set to 500, 1000, 1500, and 1600 bar. The injection duration was set to $500{\mu}s$. Consequently, it was found that there is no significant difference in the characteristics of the spray behavior (spray angle) in response to changes in the blend ratio of the biodiesel or changes in the injection pressure. However, at higher injection pressures, the spray angle decreased slightly.

A Study on Cost Estimation for Smart Mobility Service (스마트 모빌리티 서비스를 위한 비용추정)

  • Cheon, Seohyung;Kim, Dongyeon;Ahn, Jae-Hyeon;Park, Kyuhong
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.301-313
    • /
    • 2021
  • The automotive industry is facing a paradigm shift, changing from owning to sharing and from manufacturing to service. However, it is hard to conclude that the economic value of smart mobility service is always positive to users. Cost related to owing or share a vehicle is very hard to estimate from the perspective of potential users as well as the benefit of the service. Focusing on the cost side of the story, this study develops a cost estimating model based on three main factors: electrification, advanced driving assistant systems (ADAS) function, and participation of ride-sharing service. As a result of the model analysis, low cost was estimated as a result when receiving cost benefits such as electrification and ride-sharing participation. Various factors were analyzed through sensitivity analysis also. These results can provide useful insights into the cost prediction and strategies for potential users and manufacturers on smart mobility service market.

Effectiveness and Characteristics Analysis of Inertia Driving on Fuel-Cut Zones in Urban Highway (도시부도로 연료차단구역의 관성주행 특성 및 효과분석)

  • Choi, Eun Jin;Kim, Eungcheol;Kim, Yong Jin;Yang, Joo Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • In this study, the effects of inertial driving on a fuel-cut zone were analyzed by measuring the instantaneous variations of fuel consumption and speed. Thirteen sites with 2-8% downhill slopes were selected for the vehicle experiments. The vehicles were driven on the sites in two different driving modes, and the various vehicle states were measured using OBD under driving. For the analysis of the effects of inertial driving, the characteristics of fuel consumption, speed, and rpm were compared between normal and inertial driving. As a result, the fuel consumption was reduced from 24% to 78% according to the downhill grade. The amount of fuel consumption reduction was about 30cc for driving 500m downhill. Fuel cost savings amounting to 35 billion won can be achieved if inertial driving will be done in the case of Munemi-ro3. It is also believed that the reduced fuel consumption and vehicle speed through inertial driving will have considerable environmental and safety benefits.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Estimation of CO2 Emission and Emission Cost Function of Thermal Power Plants and Application to 5-Bus Sample Power System (화력발전소의 CO2 배출량 및 배출비용 함수산정과 5모선 전력계통 적용사례)

  • Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 2008
  • The global warming due to greenhouse gases is now the hottest issue all over the world. The world has been under $CO_2$ war since the Kyoto Protocol was opened for signature on December 11, 1997 in Kyoto, Japan. The Kyoto Protocol now covers more than 164 countries globally as of July 2006. Countries that ratify this protocol commit to reduce their $CO_2$ emissions, or engage in emissions trading. Korea is also expected to obey the Protocol starting in 2013, which will give a serious shock especially to the electric power industry. The power plants burning the fossil fuel produce more than 20 percent of national total $CO_2$ emission. This paper resents the calculation of the amount and cost of $CO_2$ emission w.r.t. generator MW output and its application to power system operation. The $CO_2$ emission function is derived using the input-output coefficients of the thermal power plants. The optimal power system operation considering $CO_2$ emission and its cost is demonstrated on a five-bus sample power system.

Fuel Mix of Electricity Generating System Considering Energy Security and Climate Change Mitigations : Focusing on Complementarity between Policy Objectives (에너지 안보 및 기후변화 대책을 고려한 발전구성비의 도출 : 정책 목표간의 상호보완성을 중심으로)

  • Ryu, Hanee;Kim, Kyunam;Kim, Yeonbae
    • Environmental and Resource Economics Review
    • /
    • v.20 no.4
    • /
    • pp.761-796
    • /
    • 2011
  • The purpose of this paper is to derive fuel mix of electricity generating system with the lowest cost considering energy security and climate change mitigations as the target of energy policy. Energy Security Price Index(ESPI), based on the measure of market concentration in fossil fuel market and political risk of exporting countries, is chosen to assess the level of energy security. The methodology of Energy Conservation Supply Curve(CSC) is applied to fuel mix to meet the carbon emission mitigation through increasing the alternatives participation and introduction of new technologies. These also represent an improvement on the level of energy security, having the complementarity between two objectives. The alternative measure for improving energy security is exploration and production(E&P) of fossil fuel for energy sufficiency. Fuel mix of electricity generating system to achieve certain objectives in 2020 can be derived with the lowest cost considering energy security and carbon emission mitigations.

  • PDF

A Study on the Evaluation of Fuel Characteristic and Economic Benefit for Co-combustion of Dried Sewage Sludge with Coal (건조 하수슬러지의 석탄 혼소를 위한 연료특성 및 경제성 평가에 관한 연구)

  • Kang, Jeong Hee;Kang, Jong Yun;Lee, See Hyung;Kim, Byung Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A study on combustion characteristic and evaluation of cost benefit were carried out using dried sewage sludge to evaluate co-combustion with coal in a coal-fired power plant. In the result of proximate analysis, sewage sludge has 78.09%, 79.65% of moisture content in A STP(Sewage Treatment Plant) and B STP, respectively. The dried sewage sludges show 0.12, 0.14 of fuel ratio value, respectively and over 30,000kcal/kg of combustible index. It means that the dried sewage sludges needs to reform from the results of fuel ratio and combustible index. As a results of the economical benefit evaluation of dried sewage sludge, about 73.4 million won through using the dried sewage sludges instead of coal and 56.4 million won through REC(Renewable Energy Certificate) cost were saved, respectively. On the other hand, it occurs 4.2 million won of additional cost related to ash disposal and 2.6 million won of investment/operation cost for co-combustion facility. In conclusion, co-combustion of dried sewage sludges with coal in a coal-fired power plant saves about 123 million won. However, it needs to consider for power supply to produce dried sewage sludges and opportunity cost for environmental pollution and so on to evaluate more reasonable benefit of co-combustion.

Numerical Simulation of Crash Impact Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 충돌충격시험 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Kim, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.521-530
    • /
    • 2011
  • Since aircraft fuel tanks have many interfaces connected to the airframe as well as the fuel system, they have been considered as one of the system-dependent critical components. Crashworthy fuel tanks have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel tanks to prevent most, hopefully all, fatality due to post-crash fire. The mandatory crash impact test required by the relevant specification, MIL-DTL-27422D, has been recognized as a non-trivial mission and caused inevitable delay of a number of noticeable rotorcraft development programs such as that of V-22. The crash impact test itself takes a long-term preparation efforts together with costly fuel tank specimens. Thus a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel tanks. In the present study the crash impact simulation of a few fuel tank configurations is conducted with the commercial package, Autodyn, and the resulting equivalent stresses and internal pressures are evaluated in detail to suggest a design improvement for the fuel tank configuration.

Modeling Korean Energy Consumption Behavior Using a Concavity Imposed Translog Cost Function (정규성 개선에 중점을 둔 제조업 에너지 수요구조 모형 연구 : 오목성 조건을 만족하는 Translog 비용함수 모형)

  • Kim, Jihyo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.633-658
    • /
    • 2010
  • In this paper, we estimate the Translog cost function in Korean manufacturing, using capital (K), labor (L), material (M), electricity (E), fuel (F) data over the period from 1970 to 2005. Especially, this paper investigates the impact of imposing concavity in the estimation of a Translog cost function. Although the value of log-likelihood is somewhat reduced in a concavity imposed function rather than a function which is not, a concavity imposed function satisfies regularity conditions (monotonicity, positivity, concavity) at all data points. We also calculate price elasticities using a concavity imposed Translog cost function. Electricity complements capital so electricity demand increases as capital demand increases. Meanwhile, electricity substitutes labor, fuel, and material. These results show that Korean manufacturing experienced a structural change of increase in electricity demand.

  • PDF