• Title/Summary/Keyword: 연료분포

Search Result 513, Processing Time 0.025 seconds

Characteristics of Trace Element Concentrations in Dust by Facilities and Areas in Daegu, Korea (대구지역 축적먼지 중 미량원소성분의 시설별 및 지역별 농도분포)

  • Song, Hee-Bong;Do, Hwa-Seok;Kwak, Jin-Hee;Kim, Jong-Woo;Kang, Jae-Hyoung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • Dust samples have been collected from streets, schools, subway stations and households in Daegu metropolitan city. Samples were sieved through a 100 ${\mu}m$ mesh and the concentration of 14 elements have been determined using by ICP after acid extraction. Results showed that Ca, Fe, K, Mg, Mn, Na and V were influenced by natural sources while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. In particular, school dust had higher levels of Ca and Pb and subway station dust had higher levels of Cu and Zn. The percentage composition of chemicals from subway stations, households, and schools were remarkably higher in components from anthropogenic sources than that from streets. It is well recognized that anthropogenic sources were affected by indoor dust. Results of pollution index of hazardous heavy metals indicated that schools, households, and subway stations were more contaminated than streets and urban areas typically had higher pollution index than rural areas. The correlation analysis among trace elements seem to suggest that there were correlations between components of soil/road dust resuspension, and components of waste incineration and fuel combustion.

A thermal-flow analysis of deaerator floor of power plant for reducing the radiative heat transfer effect (발전소 Deaerator floor의 복사효과 저감을 위한 열유동 해석)

  • Kim, Tae-Kwon;Ha, Ji-Soo;Choi, Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.476-481
    • /
    • 2016
  • Steam power generation is used to produce electricity through a generator that is connected to a steam turbine. As a result, the surface temperature of the deaerator is $70^{\circ}C$during the summer season, the surface temperature of the storage tank is $67^{\circ}C$, and the air temperature is $50^{\circ}C$. This environment is inappropriate for workers and instruments. Workers adjacent to the deaerator and storage tank in particular feel higher temperatures because of the radiative heat transfer effect. Therefore, we optimized the cooling conditions by computational analysis. Case 1 is the current shape of the power plant, Case 2 has additional insulation, and Case 3 has a radiation shield. Flow is caused by a temperature difference between the heat sources in the wall, and hot air is trapped in the right upper end. Based on the temperature contours and the maximum temperature of the surfaces, Case 2 was found to be the most efficient for reducing radiative heat transfer effects.

Numerical Study to Develop Low-NOx Multi-nozzle Burner in Rotary Kiln (로터리 킬른용 Low-NOx 다공노즐버너 개발을 위한 수치해석적 연구)

  • Ahn, Seok-Gi;Kim, Jin-Ho;Hwang, Min-Young;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.130-140
    • /
    • 2014
  • Rotary kiln burner has been developed continuously to improve process efficiency and exhaust emission. In this study, the characteristics of the flame and exhaust emission were numerically analyzed according to the diameter of primary air nozzle, equivalent ratio of burner, and equivalent ratio at center and side nozzle for development of multi-nozzle burner in the COG(Coke Oven Gas) rotary kiln for sintering iron ore. The results indicated that the flame length and $NO_x$ emission increase, as the diameter of primary air nozzle and equivalent ratio of burner increase. And according to the change of equivalent ratio at the center and the side of the nozzle, the flame length and average temperature in the kiln show very little change but the $NO_x$ emission shows obvious difference. In conclusion, the best design conditions which have satisfying flame length, average temperature and $NO_x$ emission are as follows: $D_2/D_1$ is 1.33, equivalent ratio of burner is 1.25 and center nozzle conditions are Rich.

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS (WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가)

  • Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

Improvement of Insulation System for LNG Storage Tank Base Slab (LNG 저장탱크 바닥판 단열 시스템 개선)

  • Lee, Yong-Jin;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.141-147
    • /
    • 2010
  • Liquefied natural gas(LNG) is natural gas that has been converted temporarily to liquid form for ease of storage and transport it. Natural gas is the worlds cleanest burning fossil fuel and it has emerged as the environmentally preferred fuel of choice. In Korea, the demand of this has been increased since the first import from the Indonesia in 1986. LNG takes up about 1/600th the volume of natural gas in the gaseous state by cooling it to approximately $-162^{\circ}C(-260^{\circ}F)$. The reduction in volume therefore makes it much more cost efficient to transport and store it. Modern LNG storage tanks are typically the full containment type, which is a double-wall construction with reinforced concrete outer wall and a high-nickel steel inner tank, with extremely efficient insulation between the walls. The insulation will be installed to LNG outer tank for the isolation of cryogenic temperature. The insulation will be installed in the base slab, wall and at the roof. According to the insulation's arrangement, the different aspects of temperature transmission is shown around the outer tank. As the result of the thermal & stress analysis, by the installing cellular glass underneath the perlite concrete, the temperature difference is greatly reduced between the ambient temperature and inside of concrete wall, also reducing section force according to temperature load.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).