• Title/Summary/Keyword: 연료다단

Search Result 66, Processing Time 0.028 seconds

Numerical Study on the Effect Recess on the Turbulent Combustion of Kerosene/LOx Coaxial Rocket Injector (케로신-산소 로켓 동축 분사기 난류 연소에서 리세스의 영향에 대한 수치해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.92-95
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Fuel stratification by multiple injection in DME HCCI engine combustion (DME 예혼합 압축착화 엔진에서 다단분사를 통한 연료 성층화)

  • Yoon, Hyeonsook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.311-312
    • /
    • 2012
  • Homogeneous charge compression ignition combustion with multiple-injection strategy using dimethyl-ether was investigated in a single cylinder direct-injection compression-ignition engine. The combustion performance and exhaust emissions were tested by varying the post injection conditions. The experiments were carried out under low load and low speed conditions. By the late post injection near the top dead center, the combustion phase was retarded and lengthened, and the fuel conversion efficiencies improved without the drawbacks of exhaust emissions increment.

  • PDF

핵융합연료 삼중수소 분리반응탑 전산모사

  • 정흥석;이한수;안도희;황재영;김상환;손순환;정양근;송명재;일본명
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.453-457
    • /
    • 1996
  • 월성원자력발전소에서 생성되는 삼중수소는 핵융합로의 필수원료물질이다. 삼중수소 분리반응 탑에 소요되는 다단탑의 단수와 최적운전온도 및 반응탑의 효율을 결정하기 위하여, 흡수층과 촉매층으로 구성된 분리반응탑을 모델링하고, 전산코드를 작성하였다. 이 전산코드의 결과는 실험치와 잘 일치하였으며, 최소반응단수를 갖는 설계온도는 8$0^{\circ}C$임이 밝혀졌다.

  • PDF

Comparison of the trajectory optimization methods for multi-stage solid boost launcher (다단 고체연료 우주발사체의 비행궤적 최적화기법 비교)

  • 진재현;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.413-418
    • /
    • 1991
  • Two methods are applied to the problem of trajectory optimization for launch vehicles which burn solid propellant. One is 'Optimal Control' theory, the other is 'NonLinear Programming' method. Trajectory optimization for solid rocket motors has a special problem. The special problem is that the payload of launch vehicle is not the function of control variable. This paper deals with this special problem.

  • PDF

Design of Multi Step Fuel Pump Controller for Vehicle's Fuel Retrenchment (자동차 연료 절감을 위한 연료펌프 다단 제어기 설계)

  • Yang, Jae-Won;Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.307-308
    • /
    • 2007
  • At present, there are unnecessary electrical consumes and a lot of fuel-losses by the vaporized gas due to the rising of fuel temperature because the fuel pump of the fuel supply system rotates regularly regardless to the driving condition. In this paper, we designed the multi-step controller for controlling fuel pump to supply fuel according to RPM of each moment by measuring the real time RPM of the engine at ECU of the vehicle. Also, it can judge the existence or nonexistence of disorder by measuring the pressure of the fuel supply line, in case of abnormal state, it can supply the fuel intelligently by changing the mode to self-compensation mode.

  • PDF

Start-up Strategy of Multi-Stage Burner for Methanol Fuel Reforming Plant (메탄올 연료 개질 플랜트의 다단연소기 시동 전략)

  • JI, HYUNJIN;BAIK, KYUNGDON;YANG, SUNGHO;JUNG, SEUNGKYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.201-208
    • /
    • 2019
  • Recently, a fuel reforming plant for supplying high purity hydrogen is being applied to submarines. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant for a submarine needs a multi-stage burner (MSB) to acquire heat and convert the combustion gas to $CO_2+H_2O$. The MSB has problems that the combustion imbalance occurs during start-up due to the temperature restriction of the combustion gas. This problems can be solved by burning $H_2O$ together with fuel and $O_2$. In this study, the simulation results of MSB were analyzed to determine the optimum flow rate of $H_2O$ supplied to the 6-stage burner. When the flow rate of $H_2O$ was low, combustion was concentrated on the burner#6 in comparison with the burner#1-#5. This combustion concentration improved as the supply amount of $H_2O$ increased. As a results, it was necessary to supply at least 4.9 kmol/h of $H_2O$ (per 1 kmol/h of fuel) to burner#1 in order to maintain the combustion gas temperature of each stage at $750^{\circ}C$ and to convert the final stage burner gas composition to $CO_2+H_2O$.

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis (선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구)

  • Kim, Sookyum;Woo, Seungchul;Kim, Woong Il;Park, Sangki;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.