• Title/Summary/Keyword: 연기유동

Search Result 117, Processing Time 0.023 seconds

An Experimental Study on Smoke Spread Using a Reduced-scale Subway Building Model (지하역사 축소모델을 이용한 연기확산에 대한 실험적 연구)

  • Kim, Myung-Bae;Choi, Byung-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Smoke propagation for the Daegu Metro fire is reproduced by a reduced-scale model experiment. The three-story station building was modeled with 1/20-scale, and the tunnel connected to the platform was not completely modeled because of its length. To include the flow resistance the tunnel provides the mesh screens were used in the model. The fire scenario was selected based on the fire growth rate of the metro car seat where the fire initiated. The time when smoke arrived at each compartment in the station building was measured by thermocouples and visualization. Regarding fire ventilation, the air supply that has been accepted as conventional design in a subway metro building intensifies smoke spread. The results show that the whole building was filled with smoke in about 10 minutes in case of no ventilation.

A Study on Smoke Detection using LBP and GLCM in Engine Room (선박의 기관실에서의 연기 검출을 위한 LBP-GLCM 알고리즘에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • The fire detectors used in the engine rooms of ships offer only a slow response to emergencies because smoke or heat must reach detectors installed on ceilings, but the air flow in engine rooms can be very fluid depending on the use of equipment. In order to overcome these disadvantages, much research on video-based fire detection has been conducted in recent years. Video-based fire detection is effective for initial detection of fire because it is not affected by air flow and transmission speed is fast. In this paper, experiments were performed using images of smoke from a smoke generator in an engine room. Data generated using LBP and GLCM operators that extract the textural features of smoke was classified using SVM, which is a machine learning classifier. Even if smoke did not rise to the ceiling, where detectors were installed, smoke detection was confirmed using the image-based technique.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

Numerical Simulation on the Heat and Smoke Flow Phenomena Due to the Fire in a Cyclodrome (경륜장 내부의 화재발생에 따른 열 및 연기 거동에 대한 수치적 연구)

  • 박원희;김태국;손봉세
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • In this paper, numerical calculations are conducted to predict the characteristics of the heat transfer and smoke propagation in a cydodrome. The gas flow velocity and temperature around the origin of the fire is obtained by using a plume model and the turbulent flow characteristics are considered by standard $textsc{k}$-$\varepsilon$ turbulent model. In this study, the transient thermal behavior can be used for designing fire detection of large rooms.

연기거동을 고려한 대피프로그램 개발

  • Kim, Soo-Young;Lee, Chun-Ha;Kim, Eung-Sik;Kim, Hong;Kang, Young-Gu;Jung, Ki-Chang;Gu, Dong-Chul
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.237-241
    • /
    • 2002
  • 국내의 화재로 인한 대형 인명피해를 보면 대부분이 직접적인 화재의 열에 의한 것이 아니라 연기유동을 통한 유해가스들의 흡입을 통하여 또는 대피시 재실자들 간의 사고로 인하여 생기는 것으로서 이글 방지하기 위한 대책이 시급한 상황이다. 이 대책으로써 무엇보다도 건물내의 방화관리자나 건물내 거주자들에 대한 직접적인 교육이 필요하나 건물의 대형화 및 재실자들의 불확실성으로 인하여 교육의 어려움과 무엇보다도 화재의 특성상 실제상황과 같은 구현을 통하여 교육하기에는 불가능 한 실정이다.(중략)

  • PDF

Two Visualization Techniques Using Smoke-wire and Micro Water-droplets and Their Applications to Vortex Flows (연기선과 미세 수적을 이용한 두 가지 가시화 기법과 와류에의 적용)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1017-1026
    • /
    • 2016
  • The present paper describes the two off-surface visualization techniques and their application examples to vortex flows. One of the two visualization techniques is the classical smoke-wire technique, and the other is the visualization technique using the micro water-droplets generated by the home-style ultrasonic humidifier. The smoke-wire technique has the limit of air flow speed (about 5 m/sec for 0.07 mm-diameter wire) and the pollution problem, but it produces very fine and clear streak line sheet. It is applied to visualize the wing-tip vortices of a 3-dimensional wing. The micro water-droplet technique has the larger limit of air flow speed (above 10 m/sec) and is free from pollution and toxic problems compared to the smoke-wire technique. It is successfully applied to visualize the complex vortex system of a double-delta wing with an apex strake.

A Study on Smoke Control Characteristic by the Effect off Jet Fan Installation Distance (제트팬 이격거리에 따른 연기제어특성에 관한 연구)

  • Kim, Jong-Yoon;Jeon, Yong-Han;Seo, Tae-Beom;Yoo, Ji-Oh;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2008
  • In this research, the visualization experiment for a scaling tunnel was conducted to establish the optimum fire protection system in tunnel fires. In order to find the optimal operating condition of jet fan with the fire, the characteristics of smoke propagation was considered to find the optimal operating condition of jet fan at the time of tunnel fire, the concentration of smoke was measured experimentally for various jet fan position and it's operating condition. As a result, when jet fan in the vicinity of fire operates at the upstream, the back-layering of the smoke should be considered with separation distance from the fire source. The distance between the jet fan and the fire should be longer than 50 m. On the other hand, when the vicinity jet fan operates at the downstream, the back-layering of smoke does not occur, but stratification is not maintained because the smoke dispersion occurs at the downstream due to the operation of the jet fan.

Revision of the Input Parameters for the Prediction Models of Smoke Detectors Based on the FDS (FDS 기반의 연기감지기 예측모델을 위한 입력인자 재검토)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.44-51
    • /
    • 2017
  • Accurate predictions of the activation time for smoke detectors using a fire simulation is are required to ensure the reliability of the RSET (Required Safe Egress Time) calculation in the process of PBD (Performance-Based Design). The objective of this study was to enhance the accuracy of input parameters for the numerical models of smoke detector based on the FDS. To this end, a Fire Detector Evaluator (FDE) developed in previous studies was improved. The uniformities of flow and smoke inside the FDE were improved and accurate measurements of the obscuration per meter (OPM) related to detector operation were also performed through a decrease in the forward scattering of smoke particles. The input parameters using the improved FDE showed a significant difference from the previous FDE quantitatively. In particular, a larger difference was found in a photoelectric detector compared to an ionization detector. Considering that the operating conditions of smoke detectors are affected by the detector type, combustibles, smoke particulars, and color, the database (DB) on the input parameters for various detectors and combustibles should be built to improve the reliability of PBD in future studies.

A Study of Smoke Movement in Tunnel Fires (터널내에서 화재 발생시 연기 거동에 대한 연구)

  • 김상훈;김성찬;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in tunnel, and their results were compared with those of numerical simulation. The 1/20 scale experiments were conducted under the Froude scaling since smoke movement in tunnel is governed by buoyancy farce. A numerical simulations were on performed 3D unstructured meshes with PISO algorithm and buoyant plume models. Results showed that data was in reasonable agreement with the numerical data of smoke velocity, temperature distribution, and clear height.

  • PDF