Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.477-479
/
2012
개의 발성은 성도의 물리적인 특징에 따라 고유의 특정 포먼트를 만들어 내며 개의 품종에 따라 다른 물리적 특징을 가지므로 개의 발성을 HMM(Hidden Markov Model)으로 모델링하여 개의 품종을 분류하는 연구를 하였다. 주파수 특징은 MFCC(Mel Frequency Cepstral Coefficients) 12차, 에너지 컴포넌트 1차, 델타 13차, 억셀러레이션(Acceleration) 13차, 총 39차 벡터를 사용하였다. 개의 품종 분류에 적합한 HMM 구조의 설계를 위하여 기본 좌우 모델, 좌우 모델, 좌우 모델2, 전후진 모델, 총 4가지를 제안하고 실험하여 성능을 비교분석하였다. 이 중 전후진 모델이 가장 바람직한 모델로 검증 되었다. 본 모델은 다음과 같은 장점을 갖는다. (1) 기본 좌우 모델과 마찬가지로 1~2회 발성을 갖는 데이터가 입력되어도 처음에서 마지막 상태까지의 이동단계가 최소 3번까지 가능하므로 적은 횟수의 발성 데이터도 처리가 가능하다. (2) 다수 반복된 발성 데이터의 신호도 처리가 가능하다. 즉, 본 모델은 상태의 이동이 후진도 가능하므로 5회이상 반복된 발성 데이터의 신호의 처리도 가능하다.
Proceedings of the Technology Innovation Conference
/
2004.06a
/
pp.237-248
/
2004
투자성과평가에서 주요 이슈 중 하나는 최적의 투자규모, 즉 자원할당을 결정하는 것이다 기존연구에서는 서열모델, 평점모델, 경제성 모델, 포트폴리오 모델, 위험 분석 및 의사결정모델, 조직 의사결정모델 등 많은 모델들이 연구자들에 의해 제안되어 왔다. 시스템에서 성과측정은 시스템 설계와의 일치가 요구되므로, 자원할당도 시스템 설계와 연계되어 결정되어야 한다 그러나 자원할당방법에 대한 기존 연구는 대부분 자원할당모델의 개발에 중점을 두고 있으며, 모델 개발시에 시스템 설계에 대해 고려하고 있는 문헌은 거의 없다. 본 논문은 투자목표를 최대로 하기 위한 최적 자원할당방법에서 시스템 설계를 고려하기 위하여 시스템 설계분해개념에 기초한 자원할당방법의 절차와 유전자 알고리즘을 이용한 자원할당방법을 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.384-385
/
2017
과학 모델은 복잡한 자연현상을 단순화하고 패턴화한 것이다. 따라서 과학 모델은 특정한 알고리즘을 가지며, 과학 모델에 대한 이해는 모델이 갖는 특정한 알고리즘에 대한 이해와 직접적으로 관련되어있다. 본 연구에서는 많은 학생들이 대안 개념을 가지고 있는 산-염기를 주제로 하여, 이 모델이 가지는 알고리즘을 학습하기 위한 프로그램을 설계하고, 알고리즘을 학습 하였을 때 과학 학습에 미치는 효과를 확인하였다. 고등학생 3학년을 대상으로 4차시로 수업을 진행하였으며, 수업의 사전과 사후 검사를 실시하여, 학생들의 모델에 대한 이해를 분석하였다. 수업 결과, 학생들은 모델의 정의와 화학반응 및 화학평형의 정성적인 부분에서는 이해의 향상을 보였으나, 정량적인 부분에는 효과를 보이지 못하였다. 이는 화학이 많은 수의 입자를 고려해야 하는 독특한 과목의 특성에 기인하며, 이를 보완하기 위하여 추후 컴퓨터프로그램을 교육 도구로 사용하는 수업을 통해 후속연구를 진행하고자 한다.
임계열속을 예측하는 기존의 여러 방법중 임계열속 발생 역학구조에 근거한 이론적 접근 방법은 여러 유동형태(Flow pattern)별로 연구되고 있으며, 대표적으로 환상유동에서의 LFD(Liquid Film Dryout) 이론, 기포류에서의 BBLD(Bubble Boundary Layer Dryout) 흑은 LNID(Local Nucleation Initiated Dryout)이론 등이 제시되고 있다. 본 논문에서는 일반적으로 원자로 조건에 서 적용될 수 있는 LFD이론과 BBLD 이론에 대하여 대표적인 모델들을 소개하고 특성을 검토하였다. 특히 BBLD 이론중에서 기포군집 (Bubble coalescence) 모델과 층류막 드라이 아웃(Sublayer dryout) 모델에 대해서는 원형관에서의 임계열속 시험자료를 사용하여 각 모델의 예측 성능 및 특성을 평가하였다. 평가 결과, 기포군집 모형인 Weisman 모델의 예측성능이 가장 우수했으며 아울러 층류막 드라이아웃 모델인 Katto 모델과 Mudawwar 모델은 구성 인자중 기포군속도와 층류막 두께와의 관계가 보다 정확히 모형화되야 할 것으로 판단된다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.11a
/
pp.294-302
/
2007
멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.945-947
/
2013
입력 모듈의 결함경향성을 결정하는 결함 예측 모델 연구들은 대부분 훈련 데이터 집합을 사용하는 감독형 모델에 관련된 것들이었다. 하지만 과거 데이터 집합이 없거나 현재 프로젝트 성격이 다른 경우는 비감독형 모델이 필요하며, 이들에 관한 연구들은 모델 구축의 어려움 때문에 극소수 존재한다. 본 논문에서는 대표적인 클러스터링 알고리즘들을 사용한 비감독형 모델들을 제작하여, 기존 모델들이 많이 사용한 K-means 모델과 나머지 모델들의 성능을 비교하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.470-474
/
2019
한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.245-250
/
2023
RLHF(Reinforcement Learning from Human Feedback, 인간 피드백 기반 강화학습) 방법론이 최근 고성능 언어 모델에 많이 적용되고 있다. 이 방법은 보상 모델과 사람의 피드백을 활용하여 언어 모델로 하여금 사람이 선호할 가능성이 높은 응답을 생성하도록 한다. 하지만 상업용 언어 모델에 적용된 RLHF의 경우 구현 방법에 대하여 정확히 밝히고 있지 않다. 특히 강화학습에서 환경(environment)을 담당하는 보상 모델을 어떻게 설정하는지가 가장 중요하지만 그 부분에 대하여 오픈소스 모델들의 구현은 각각 다른 실정이다. 본 연구에서는 보상 모델을 훈련하는 큰 두 가지 갈래인 '순위 기반 훈련 방법'과 '분류 기반 훈련 방법'에 대하여 어떤 방법이 더 효율적인지 실험한다. 또한 실험 결과 분석을 근거로 효율성의 차이가 나는 이유에 대하여 추정한다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.582-585
/
2024
이 연구는 컴퓨팅 자원이 제한된 환경에서 딥러닝 모델의 문제를 해결하기 위해 합성곱 신경망(CNN)에서 동적 가지치기 모델의 적용을 탐구한다. 첫째, 동적 가지치기 모델의 원리와 방법에 대해 기존 방법과의 비교를 소개한다. 둘째, 기존적인 방법 동적 가지치기 모델의 구현 과정 및 결과 분석을 포함한 실험 단계를 자세히 설명한다. 실험 결과는 동적 가지치기 모델이 적절한 훈련에서 모델의 분류 성능을 효과적으로 향상시킬 수 있으며 강력한 일반화 능력을 가지고 있음을 보여준다. 마지막으로 딥러닝 방법과 기존 방법의 차이점과 장단점을 분석하고 요약하여 실제 적용에서 딥러닝 모델 배치에 유용한 탐색과 참고 자료를 제공한다. 이 연구는 딥러닝 분야에서 동적 가지치기 모델의 적용을 추가로 탐색하기 위한 중요한 이론 및 실습 기반을 제공한다.
Proceedings of the Korean Fiber Society Conference
/
1998.04a
/
pp.253-257
/
1998
지금까지 직물의 역학적 특성을 고찰하기 위하여 직물의 구조에 대한 기하학적인 모델들이 많은 연구자들에 의해 소개되어 왔다. 1937년에 Peirce$^1$가 원형 단면의 모델을 제안하면서부터 이 모델을 기본으로 한 기하학적 모델에 대한 연구가 활발히 진행되어 race track 모델, lenticular 모델, circular arc 모텔, 직선 모델등 여러 가지 모델이 제시되었다. 이러한 모델들은 직물의 종류와 이완상태에 따라 직물의 역학적 특성을 예측하는데 있어 커다란 차이가 있다.(중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.