• Title/Summary/Keyword: 연관 규칙 알고리즘

Search Result 200, Processing Time 0.032 seconds

Introduction to Concept in Association Rule Mining (연관규칙 마이닝에서의 Concept 개요)

  • ;;R. S. Famakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.100-102
    • /
    • 2002
  • 데이터 마이닝의 대표적인 기법인 연관규칙 마이닝을 위한 다양만 알고리즘들이 제안되었고, 각 알고리즘에 따른 대용량 데이터에 대한 신속한 탐색을 위한 독특한 자료구조가 제안되었다 각 자료구조의 특성에 따른 알고리즘 성능은 데이터의 패턴에 크게 의존한다. 본 논문에서는 Concept을 형성하는 세가지 대표적인 자료구조인 Hash Tree, Lattice. FP-Tree에 대해 비교 분석해보고, 데이터 패턴에 적합한 효율적인 알고리즘의 설계 위한 framework을 제안한다.

  • PDF

A Study for Keyword Extraction Method (키워드 추출 기법에 관한 연구)

  • Shin, Seong-Yoon;Jeong, Kyong-Taek;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.463-466
    • /
    • 2009
  • 본 논문에서는 대량의 문제를 자동으로 분류하기 위하여 비감독 학습 기법에 의해 카테고리별 키워드를 구성하기 위한 방법을 제안하였다. 제안된 방법에서는 사전에 문제를 분류하지 않고 키워드를 추출하기 위하여 데이터마이닝 기법 중의 하나인 연관 규칙 탐사 알고리즘을 이용하였다. 먼저, 각 카테고리를 대표하는 핵심 키워드를 선정하고, 연관 규칙 탐사 알고리즘을 적용하여 각 핵심 키워드와 관련된 용어 집합을 추출한다.

  • PDF

Association Rule Discovery for Sequence Analysis (서열 분석을 위한 연관 규칙 탐사)

  • 김정자;이도헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.91-93
    • /
    • 2001
  • 최근 지놈(Genome) 프로젝트를 통해 핵산, 단백질 서열 정보가 밝혀짐에 따라 분자 수준의 유전자 정보를 다루는 기법들이 활발히 연구되면서 방대한 서열 정보를 데이터 베이스화하고, 부족하기 위한 효과적인 도구와 컴퓨터 알고리즘의 개발을 필요로 하고 있다. 본 논문에서는 여러 단백질에 공통적으로 존재하는 서열 정보간에 존재하는 연관성을 탐사하기 위한 서열 연관 규칙 알고리즘을 제안한다. 원자 항목을 취급하였던 기존 알고리즘과는 달리 중복을 반영해야 하는 서열 데이터의 특성을 고려하여야 한다. 실험을 단백질 서열 데이터를 대상으로 수행하였다. 먼저 여러 서열에 빈발하게 발생하는 부 서열 집합을 찾고, 부 서열 집합들간에 존재하는 관련성을 탐사한다. 본 연구의 결과는 탐사된 규칙으로부터 다른 단백질의 구조와 기능을 예측할 수 있고, 이 정보는 필요로 하는 생물학적 분석을 방향을 제시할 것이다. 이는 생물학적 실험 대상의 후부조합을 최소화함으로써 많은 시간과 노력 비용을 절감할 수 있다.

  • PDF

개인화를 위한 추천시스템 알고리즘에 관한 연구

  • Gang, Hyeon-Cheol;Han, Sang-Tae;Sin, Yeon-Ju
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.307-311
    • /
    • 2003
  • 개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.

  • PDF

Temporal Association Rules with Exponential Smoothing Method (지수 평활법을 적용한 시간 연관 규칙)

  • Byon, Lu-Na;Park, Byoung-Sun;Han, Jeong-Hye;Jeong, Han-Il;Leem, Choon-Seong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.741-746
    • /
    • 2004
  • As electronic commerce progresses, the temporal association rule is developed from partitioned data sets by time to offer personalized services for customer's interest. In this paper, we proposed a temporal association rule with exponential smoothing method that is giving higher weights to recent data than past data. Through simulation and case study, we confirmed that it is more precise than existing temporal association rules but consumes running time.

Mining Association Rules on Significant Rare Data using Relative Support (상대 지지도를 이용한 의미 있는 희소 항목에 대한 연관 규칙 탐사 기법)

  • Ha, Dan-Shim;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2001
  • Recently data mining, which is analyzing the stored data and discovering potential knowledge and information in large database is a key research topic in database research data In this paper, we study methods of discovering association rules which are one of data mining techniques. And we propose a technique of discovering association rules using the relative support to consider significant rare data which have the high relative support among some data. And we compare and evaluate existing methods and the proposed method of discovering association rules for discovering significant rare data.

  • PDF

TF-IDF Based Association Rule Analysis System for Medical Data (의료 정보 추출을 위한 TF-IDF 기반의 연관규칙 분석 시스템)

  • Park, Hosik;Lee, Minsu;Hwang, Sungjin;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.145-154
    • /
    • 2016
  • Because of the recent interest in the u-Health and development of IT technology, a need of utilizing a medical information data has been increased. Among previous studies that utilize various data mining algorithms for processing medical information data, there are studies of association rule analysis. In the studies, an association between the symptoms with specified diseases is the target to discover, however, infrequent terms which can be important information for a disease diagnosis are not considered in most cases. In this paper, we proposed a new association rule mining system considering the importance of each term using TF-IDF weight to consider infrequent but important items. In addition, the proposed system can predict candidate diagnoses from medical text records using term similarity analysis based on medical ontology.

An Efficient Algorithm for Mining Ranged Association Rules (영역 연관규칙 탐사를 위한 효율적 알고리즘)

  • 조일래
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.169-181
    • /
    • 1997
  • Some association rules can have very high confidence in a sub-interval or a subrange of the domain, though not quite high confidence in the whole domain. In this paper, we define a ranged association rule, an association with high confidence worthy of special attention in a sub-domain, and further propose an efficient algorithm which finds out ranged association rules. The proposed algorithm is data-driven method in a sense that hypothetical subranges are built based on data distribution itself. In addition, to avoid redundant database scanning, we devise an effective in-memory data structure, that is collected through single database scanning. The simulation shows that the suggested algorithm has reliable performance at the acceptable time cost in actual application areas.

  • PDF

A Personalized Clothing Recommender System Based on the Algorithm for Mining Association Rules (연관 규칙 생성 알고리즘 기반의 개인화 의류 추천 시스템)

  • Lee, Chong-Hyeon;Lee, Suk-Hoon;Kim, Jang-Won;Baik, Doo-Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • We present a personalized clothing recommender system - one that mines association rules from transaction described in ontologies and infers a recommendation from the rules. The recommender system can forecast frequently changing trends of clothing using the Onto-Apriori algorithm, and it makes appropriate recommendations for each users possible through the inference marked as meta nodes. We simulates the rule generator and the inferential search engine of the system with focus on accuracy and efficiency, and our results validate the system.

An Experimental Study on Selecting Association Terms Using Text Mining Techniques (텍스트 마이닝 기법을 이용한 연관용어 선정에 관한 실험적 연구)

  • Kim, Su-Yeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.3 s.61
    • /
    • pp.147-165
    • /
    • 2006
  • In this study, experiments for selection of association terms were conducted in order to discover the optimum method in selecting additional terms that are related to an initial query term. Association term sets were generated by using support, confidence, and lift measures of the Apriori algorithm, and also by using the similarity measures such as GSS, Jaccard coefficient, cosine coefficient, and Sokal & Sneath 5, and mutual information. In performance evaluation of term selection methods, precision of association terms as well as the overlap ratio of association terms and relevant documents' indexing terms were used. It was found that Apriori algorithm and GSS achieved the highest level of performances.