• Title/Summary/Keyword: 연관단어

Search Result 253, Processing Time 0.025 seconds

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Comparison of Effects of Thought Suppression and Thought Substitution Strategies Using Thought Avoidance Training (생각회피훈련을 이용한 생각억제와 생각대체 전략의 효과비교)

  • Shin, Young-Eun;Min, Yoonki;Lee, Young-Chang
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • This study examined the effect of intentional thought avoidance(i.e., thought suppression and thought substitution) using "Think and No Think" task. Two syllable words were selected, and recall test was performed with a single subject group. recall accuracy of them was measured in two recall conditions(cue recall and target recall) and four training conditions(thought, thought suppression, thought substitution, and baseline). The results showed that recall accuracy in cue recall condition was better than in target recall condition, regardless of training conditions, and recall accuracy in thought condition was better than in other training conditions, regardless of recall conditions. Also there was significant interaction between recall and training conditions: For thought suppression. there was no difference between two recall conditions, whereas for thought substitution, recall accuracy in cue recall condition was better than in target condition. These findings indicate that thought avoidance strategies, including both thought suppression and thought substitution, are effective in avoiding the specific thought intentionally, and thought suppression and thought substitution could be applied by different mechanism.

Analysis of research trends on mobile health intervention for Korean patients with chronic disease using text mining (텍스트마이닝을 이용한 국내 만성질환자 대상 모바일 헬스 중재연구 동향 분석)

  • Son, Youn-Jung;Lee, Soo-Kyoung
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • As the widespread use of mobile health intervention among Korean patients with chronic disease, it is needed to identify research trends in mobile health intervention on chronic care using text mining technique. This secondary data analysis was conducted to investigate characteristics and main research topics in intervention studies from 2005 to 2018 with a total of 20 peer reviewed articles. Microsoft Excel and Text Analyzer were used for data analysis. Mobile health interventions were mainly applied to hypertension, diabetes, stroke, and coronary artery disease. The most common type of intervention was to develop mobile application. Lately, 'feasibility', 'mobile health', and 'outcome measure' were frequently presented. Future larger studies are needed to identify the relationships among key terms and the effectiveness of mobile health intervention using social network analysis.

A Study on the Visualization of Geospatial Big Data using Sentiment Analysis of Collective Civil Complaints (집단민원의 감성분석을 이용한 공간빅데이터 시각화 방안)

  • Yong-Jin JOO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • Traditionally, surveys or interview studies have been used to measure satisfaction factors for public services. This method focuses on the simple frequency of civil complaints and does not consider the aggravation of emotions implied in civil complaints. As a result, it is difficult to judge the urgency of civil complaints and the severity of grievances experienced by civil petitioners. This study aims to calculate the negative emotional value of collective complaints by using the happiness score for each word on the Hedonometer. The Anti-Corruption and Civil Rights Commission applied a Hedonometer to the top civil complaint topics and related keyword data by region in 2021 to calculate negative sentiment values by subject of civil complaints, and visualize the distribution by region. Using the negative emotional values derived from the results of this study, the severity of emotions contained in civil complaints can be considered. It is also expected to be helpful in determining the urgency of civil complaints and the severity of grievances experienced by civil petitioners.

Development of Dog Name Recommendation System for the Image Abstraction (이미지 추상화 기법을 이용한 반려견 이름 추천 시스템 개발)

  • Jae-Heon Lee;Ye-Rin Jeong;Mi-Kyeong Moon;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.313-320
    • /
    • 2023
  • The cumulative registration status of dogs is from 1.07 million in 2016 to 2.32 million in 2020. Animal registration is increasing by more than 10% every year, and accordingly, a name must be decided when registering a dog. We want to give a name that fits the characteristics of a dog's appearance, but there are many difficulties in naming it. This paper explains the development of a system for recognizing dog images and recommends dog names based on similar objects or food. This system extracts similarities with dogs' images through models that learn images of various objects and foods, and recommends dog names based on similarities. In addition, by recommending additional related words based on the image data of the result value, it was possible to provide users with various options, increase convenience, and increase interest and fun. Through this system, it is expected that users will be able to solve their concerns about naming their dogs, check names that suit their dogs comfortably, and give them various options through various recommended names to increase satisfaction.

Meta-Record Algorithm based on Mnemonic System in Mobile Environments (모바일 환경에서 기억법 기반 메타 레코드 알고리즘)

  • Boon-Hee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.305-312
    • /
    • 2023
  • In introducing memory methods in various educational fields, programs in a mobile environment can be used for the purpose of increasing accessibility and enhancing the effectiveness of education. It is much easier to remember words with meaning than to remember numerical information such as years. From the standpoint of increasing the educational effect, the part that needs to be supplemented with the help of the application can be said to be numerical information. Most studies related to conventional numerical memory have focused on the form that helps memory by imaging numbers. In the paper on memory-based meta-record algorithms in the mobile environment, the application developed in the previous study attempts to supplement this by discovering and simply modifying the user's mistakes in the entered numerical information. In this study, we aim to increase the memory rate by constructing metadata based on personalized log information and correcting mistakes. To do this, applications suitable for the mobile environment are developed, a structure of meta-record data is proposed, and meta-record application algorithms are implemented and evaluated.

An Study on the Concept of Civic Records (시민기록에 대한 개념적 고찰)

  • Youn, Eunha
    • The Korean Journal of Archival Studies
    • /
    • no.77
    • /
    • pp.75-107
    • /
    • 2023
  • In recent discussions on civil records, the term citizen records is being used instead of civil records. It is necessary to analyze the implications of using the term 'citizen record' instead of the term 'civil record'. Specifically, this paper examines how various words, including min, are understood and used in modern Korean politics and society, and the conceptual changes in relation to social changes in Korean society, so that we can name them civil records rather than civilian records. We want to find out the conceptual implications of what we do. To this end, first, we understand the concept of citizen as a historical contrast to the people, and second, we examine the meaning of citizen record management as part of citizenship. Furthermore, from the perspective of associational civic movements, we will look at village development and community movements, and consider the political and social meanings of civic records produced by citizens in their daily lives through these activities.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.