• Title/Summary/Keyword: 연관규칙 분석

Search Result 348, Processing Time 0.029 seconds

An In-depth Analysis on Soccer Game via Webcast and Association Rule Mining (웹 캐스트와 연관규칙 마이닝을 이용한 축구 경기의 심층 분석)

  • Jung, Ho-Seok;Lee, Jong-Uk;Yu, Jae-Hak;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.17-20
    • /
    • 2011
  • 축구 비디오를 분석하고 이를 팀 전략 수립에 활용하는 축구 비디오 분석관의 역할이 강조됨에 따라, 축구 비디오에서 주요 이벤트의 탐지와 같은 절차적 기능에서 부터 고수준의 해석 방법에 이르는 다양한 기능들이 요구된다. 본 논문에서는 축구 웹 캐스트에서 실시간으로 제공하는 텍스트 정보를 기반으로 메타데이터 키워드 매칭을 통하여 축구 경기의 다양한 속성들을 추출하고 텍스트 마이닝의 대표적 해석 기법인 연관규칙 마이닝을 사용함으로써 축구 경기의 전략 수립이 가능한 고수준의 해석 방법을 소개한다. 실제 2010년 월드컵의 스페인 경기를 중계한 웹 캐스트의 텍스트 정보를 대상으로 제안된 방법론의 타당성을 검증한다.

Mining Association Rules in Multiple Databases using Links (복수 데이터베이스에서 링크를 이용한 연관 규칙 탐사)

  • Bae, Jin-Uk;Sin, Hyo-Seop;Lee, Seok-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.939-954
    • /
    • 1999
  • 데이타마이닝 분야에서는 대용량의 트랜잭션 데이타베이스와 같은 하나의 데이타베이스로부터 연관 규칙을 찾는 연구가 많이 수행되어왔다. 그러나, 창고형 할인매장이나 백화점 같이 고객 카드를 이용하는 판매점의 등장으로, 단지 트랜잭션에 대한 분석 뿐만이 아니라, 트랜잭션과 고객과의 관계에 대한 분석 또한 요구되고 있다. 즉, 두 개의 데이타베이스로부터 연관 규칙을 찾는 연구가 필요하다. 이 논문에서는 두 데이타베이스 사이에 링크를 생성하여 연관 항목집합을 찾는 알고리즘을 제안한다. 실험 결과, 링크를 이용한 알고리즘은 고객 데이타베이스가 메모리에 거주가능한 크기라면 시간에 따른 분석에 유용함을 보여주었다.Abstract There have been a lot of researches of mining association rules from one database such as transaction database until now. But as the large discount store using customer card emerges, the analysis is not only required about transactions, but also about the relation between transactions and customer data. That is, it is required to search association rules from two databases. This paper proposes an efficient algorithm constructing links from one database to the other. Our experiments show the algorithm using link is useful for temporal analysis of memory-resident customer database.

개인화를 위한 추천시스템 알고리즘에 관한 연구

  • Gang, Hyeon-Cheol;Han, Sang-Tae;Sin, Yeon-Ju
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.307-311
    • /
    • 2003
  • 개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.

  • PDF

The proposition of cosine net confidence in association rule mining (연관 규칙 마이닝에서의 코사인 순수 신뢰도의 제안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • The development of big data technology was to more accurately predict diversified contemporary society and to more efficiently operate it, and to enable impossible technique in the past. This technology can be utilized in various fields such as the social science, economics, politics, cultural sector, and science technology at the national level. It is a prerequisite to find valuable information by data mining techniques in order to analyze big data. Data mining techniques associated with big data involve text mining, opinion mining, cluster analysis, association rule mining, and so on. The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between each set of items based on the association thresholds such as support, confidence, lift, similarity measures, etc.This paper proposed cosine net confidence as association thresholds, and checked the conditions of interestingness measure proposed by Piatetsky-Shapiro, and examined various characteristics. The comparative studies with basic confidence and cosine similarity, and cosine net confidence were shown by numerical example. The results showed that cosine net confidence are better than basic confidence and cosine similarity because of the relevant direction.

The application for predictive similarity measures of binary data in association rule mining (이분형 예측 유사성 측도의 연관성 평가 기준 적용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.495-503
    • /
    • 2011
  • The most widely used data mining technique is to find association rules. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are some basic association thresholds to explore meaningful association rules ; support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence and the attributably pure confidence were developed to compensate for this drawback, but they have other drawbacks.In this paper we consider some predictive similarity measures for binary data in cluster analysis and multi-dimensional analysis as association threshold to compensate for these drawbacks. The comparative studies with net confidence, attributably pure confidence, and some predictive similarity measures are shown by numerical example.

Analysis of Network Traffic Patterns using Association Rules (연관 규칙을 이용한 네트워크 트래픽 패턴 분석)

  • Park, Tae-Jin;Won, Yong-Gwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10b
    • /
    • pp.1115-1118
    • /
    • 2001
  • 네트워크에 대한 활용 범위가 방대해 지면서, 신뢰성 및 효율성을 가지는 네트워크 관리가 필요하게 되었다. 특히 네트워크 관리에 데이터 마이닝을 이용해 네트워크의 운용 상태에 대한 유용한 정보를 추출하기 위한 기법들이 연구되고 있다. 본 논문에서는 네트워크의 최적화를 위한 하나의 방법으로, 특정 노드의 트래픽 집중 현상을 줄이기 위한 방법을 제안한다. 제안된 방법은 먼저 노드별 트래픽 정보를 표현하고, 수집된 정보들간의 연관성을 가지는 규칙들을 찾으며, 이들 규칙들 중 중복되거나 유용하지 않은 규칙들을 제거하고, 마지막으로 네트워크의 구성 정보를 반영하여 트래픽의 분산에 도움이 되지 않는 정보를 담고 있는 규칙들을 제거한다. 이러한 과정으로 얻어진 규칙들은 새로운 라우팅 정책에 반영하여 병목 현상을 제거하는데 효과적으로 활용할 수 있다.

  • PDF

A design of framework for false alarm pattern analysis of intrusion detection system using incremental association rule mining (점진적 연관 규칙을 이용한 침입탐지 시스템의 오 경보 패턴 분석 프레임워크 설계)

  • 전원용;김은희;신문선;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.307-309
    • /
    • 2004
  • 침입탐지시스템에서 발생되는 오 경보는 false positive 와 false negative 로 구분된다. false positive는 실제적인 공격은 아니지만 공격이라고 오인하여 경보를 발생시켜 시스템의 효율성을 떨어뜨리기 때문에 false positive 패턴에 대한 분석이 필요하다. 오 경보 데이터는 시간이 지남에 따라 데이터의 양뿐만 아니라 데이터 패턴의 특성 또한 변하게 된다 따라서 새로운 데이터가 추가될 때마다 오 경보 데이터의 패턴을 분석할 수 있는 도구가 필요하다. 이 논문에서는 오 경보 데이터로부터 false positive 의 패턴을 분석할 수 있는 프레임워크에 대해서 기술한다. 우리의 프레임워크는 시간이 지남에 따라 변하는 데이터의 패턴 특성을 분석할 수 있도록 하기 위해 점진적 연관규칙 기법을 적용한다. 이 프레임워크를 통해서 false positive 패턴 특성의 변화를 효율적으로 관리 할 수 있다.

  • PDF

A Movie Recommendation System processing High-Dimensional Data with Fuzzy-AHP and Fuzzy Association Rules (퍼지 AHP와 퍼지 연관규칙을 이용하여 고차원 데이터를 처리하는 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Recent recommendation systems are developing toward the utilization of high-dimensional data. However, high-dimensional data can increase algorithm complexity by expanding dimensions and be lower the accuracy of recommended items. In addition, it can cause the problem of data sparsity and make it difficult to provide users with proper recommended items. This study proposed an algorithm that classify users' subjective data with objective criteria with fuzzy-AHP and make use of rules with repetitive patterns through fuzzy association rules. Trying to check how problems with high-dimensional data would be mitigated by the algorithm, we performed 5-fold cross validation according to the changing number of users. The results show that the algorithm-applied system recorded accuracy that was 12.5% higher than that of the fuzzy-AHP-applied system and mitigated the problem of data sparsity.

An In-depth Analysis on Traffic Flooding Attacks Detection using Association Rule Mining (연관관계규칙을 이용한 트래픽 폭주 공격 탐지의 심층 분석)

  • Jaehak Yu;Bongsu Kang;Hansung Lee;Jun-Sang Park;Myung-Sup Kim;Daihee Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1566
    • /
    • 2008
  • 본 논문에서는 데이터의 전처리과정으로 SNMP MIB 데이터에 대한 속성 부분집합의 선택 방법(attribute subset selection)을 사용하여 특징선택 및 축소(feature selection & reduction)를 실시하였다. 또한 데이터 마이닝의 대표적인 해석학적 분석 모델인 연관관계규칙기법(association rule mining)을 이용하여 트래픽 폭주 공격 및 공격유형별 SNMP MIB 데이터에 내재되어 있는 특징들을 규칙의 형태로 추출하여 분석하는 의미론적 심층해석을 실시하였다. 공격유형에 대한 패턴 규칙의 추출 및 분석은 공격이 발생한 프로토콜에 대해서만 서비스를 제한하고 관리할 수 있는 정책적 근거를 제공함으로써 보다 안정적인 네트워크 환경과 원활한 자원관리를 지원할 수 있다. 본 논문에서 제시한 트래픽 폭주 공격 및 공격유형별 데이터로부터의 자동적 특징의 규칙 추출 및 의미론적 해석방법은 침입탐지 시스템을 위한 새로운 방법론에 모멘텀을 제시할 수 있다는 긍정적인 가능성과 함께 침입탐지 및 대응시스템의 정책 수립을 지원할 수 있을 것으로 기대된다.

An Algorithm for Adaptive School Web Site Construction Using Association Rules (연관규칙을 이용한 적응형 학교 웹사이트 구축 알고리즘)

  • Lee, Jeong-Min;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.721-729
    • /
    • 2004
  • 최근에 학교 현장에서 제공하는 홈페이지는 학교의 정보화 능력을 가늠하는 척도가 되고 있으며 학생과 학부모 그리고 학교가 상호 의사소통 할 수 있는 좋은 장을 마련해주고 있다. 그러나 끊임없이 변화하는 학생들의 검색 패턴에 대해서 학교 홈페이지가 적절히 대처하지 못하고 있으며, 그들의 방문 목적 달성을 위한 충분한 안내를 제공함에 있어 한계를 가지고 있는 것이 사실이다. 본 논문에서는 사이트 접속자들의 행동 패턴 분석을 위해 웹서버 로그 데이터를 이용하고, 데이터 마이닝의 한 기법인 연관규칙을 적용하여 로그 데이터를 분석함으로써 사용자들의 의미 있는 행동패턴을 추출하는 알고리즘을 제안하였다. 이렇게 추출된 행동패턴을 기반으로 하이퍼링크가 자동으로 생성되어 해당 웹페이지에 삽입됨으로써 특정 개인뿐만 아니라 공통의 다수가 편리하게 이용할 수 있는 적응형 학교 웹사이트 구축 방안을 제시한다.

  • PDF