• Title/Summary/Keyword: 역행적 엔지니어링

Search Result 2, Processing Time 0.015 seconds

Study on the Innovation Process of the Satellite Industry (인공위성 산업의 기술혁신 과정에 관한 연구)

  • Seol, Myung Hwan;Choi, Jong-In
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.6
    • /
    • pp.117-128
    • /
    • 2014
  • This is the case study of SATREC INITIATIVE company which is the unique domestic production of commercial satellites. We examined the path and pattern for accumulation of technological capability and technology learning process. This case study show that the process of technological innovation and their influencing factors. First, the technological learning of the satellite industry follows the stage of technological acquisition, absorption, improvement and is embodied by the technological capability. Second, accumulated technological capability of the satellite industry influences the technology innovation. Third, the top management team(TMT) affects the technological learning and technological capability. Fourth, TMT has a moderating role between the technological capability and the performance of technological innovation. Finally, technological innovations in the small and venture business would be the source of technological capability and technological learning. The implications of this study are as follows. TMT has the very important role for the technological innovation and affect the technology development and the production. Also technology-based companies must gain a competitiveness advantage through technological learning and technological innovations for sustainable growth.

  • PDF

Calculating Method of FRF with Sub-structure Mode Synthesis Method (부분구조 모드합성법에 의한 주파수응답함수 산출법)

  • Oh, Chang-Guen;Park, Kyung-Il;Park, Sok-Chu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.393-398
    • /
    • 2015
  • A very important part in vibration analysis is to calculate the frequency response function (FRF). In general, a large sized or/and complicated structure has many thousands to millions of degrees. Therefore, the FRF cannot be calculated by the traditional analysis method using an inverse matrix. This paper presents a new FRF calculation method of a superstructure by synthesizing sub-structure modes, of which the DOF can be deduced by partitioning into some sub-structures. To confirm its analysis results, the method was applied to an assembled plate ($B300{\times}L900{\times}t5mm$) with three diagonal sub-plates($B300{\times}L300{\times}t5mm$) in series and compared with the measured data. The test results have were comparable those of the calculated ones with an error less than 5%.