• Title/Summary/Keyword: 역할 모델링

Search Result 984, Processing Time 0.022 seconds

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu (부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 -)

  • Park, Weonmo;Go, Jungil;Kim, Yongsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.351-378
    • /
    • 2006
  • With the development of media, the methods for the documentation of intangible cultural heritage have been also developed and diversified. As well as the previous analogue ways of documentation, the have been recently applying new multi-media technologies focusing on digital pictures, sound sources, movies, etc. Among the new technologies, the documentation of intangible cultural heritage using the method of 'Motion Capture' has proved itself prominent especially in the fields that require three-dimensional documentation such as dances and performances. Motion Capture refers to the documentation technology which records the signals of the time varing positions derived from the sensors equipped on the surface of an object. It converts the signals from the sensors into digital data which can be plotted as points on the virtual coordinates of the computer and records the movement of the points during a certain period of time, as the object moves. It produces scientific data for the preservation of intangible cultural heritage, by displaying digital data which represents the virtual motion of a holder of an intangible cultural heritage. National Research Institute of Cultural Properties (NRICP) has been working on for the development of new documentation method for the Important Intangible Cultural Heritage designated by Korean government. This is to be done using 'motion capture' equipments which are also widely used for the computer graphics in movie or game industries. This project is designed to apply the motion capture technology for 3 years- from 2005 to 2007 - for 11 performances from 7 traditional dances of which body gestures have considerable values among the Important Intangible Cultural Heritage performances. This is to be supported by lottery funds. In 2005, the first year of the project, accumulated were data of single dances, such as Seungmu (monk's dance), Salpuri(a solo dance for spiritual cleansing dance), Taepyeongmu (dance of peace), which are relatively easy in terms of performing skills. In 2006, group dances, such as Jinju Geommu (Jinju sword dance), Seungjeonmu (dance for victory), Cheoyongmu (dance of Lord Cheoyong), etc., will be documented. In the last year of the project, 2007, education programme for comparative studies, analysis and transmission of intangible cultural heritage and three-dimensional contents for public service will be devised, based on the accumulated data, as well as the documentation of Hakyeonhwadae Habseolmu (crane dance combined with the lotus blossom dance). By describing the processes and results of motion capture documentation of Salpuri dance (Lee Mae-bang), Taepyeongmu (Kang seon-young) and Seungmu (Lee Mae-bang, Lee Ae-ju and Jung Jae-man) conducted in 2005, this report introduces a new approach for the documentation of intangible cultural heritage. During the first year of the project, two questions have been raised. First, how can we capture motions of a holder (dancer) without cutoffs during quite a long performance? After many times of tests, the motion capture system proved itself stable with continuous results. Second, how can we reproduce the accurate motion without the re-targeting process? The project re-created the most accurate motion of the dancer's gestures, applying the new technology to drew out the shape of the dancers's body digital data before the motion capture process for the first time in Korea. The accurate three-dimensional body models for four holders obtained by the body scanning enhanced the accuracy of the motion capture of the dance.