• Title/Summary/Keyword: 역학적-경험적 설계

Search Result 74, Processing Time 0.022 seconds

Evelopment of a Practical Mechanistic-Empirical design Procedure for Flexible Pavements (역학적이론과 경험에 근거한 실용적 연성포장 설계법 개발)

  • Park, Dong-Yeob;Kim, Hyung-Bae;Buch, Neeraj;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.1-13
    • /
    • 2002
  • Design methods for new flexible pavements and overlays are in the transition from empirical to mechanistic approach, and many state highway agencies trend to move toward the adoption and use of mechanistic-empirical (M-E) design in new constructions and rehabilitations of flexible pavements. Hence, the Michigan Department of Transportation (MDOT) decided to develop a M-E flexible pavement design procedure, in which major pavement distresses such as fatigue cracking and rutting are employed as indicators of the serviceability of a flexible pavement. The main concept of the developed design procedure is that a designed pavement that is supposed to carry a certain number of traffic must satisfy designated thresholds of rut depths and fatigue lives during a service period. For the M-E design procedure, transfer functions were developed to predict rut-depths and fatigue lives. These functions related the pavement responses to pavement performance. For validation, three current new flexible pavement design cases were obtained from the MDOT. In these cases, asphalt concrete (AC) layer thicknesses determined by the suggested M-E procedure compare favorably with those determined by the current MDOT design practice that is based on AASHTO design guide. This finding implies that the suggested Michigan M-E flexible pavement design procedure can provide a good opportunity to improve the current design practice.

  • PDF

Comparative Analysis in Sensitivity of Cumulative Fatigue Damage of Mechanistic-Empirical Concrete Pavement Design Programs (역학적-경험적 콘크리트 포장설계 프로그램의 누적피로손상 민감도 비교분석)

  • Park, Joo-Young;Park, Jeong-Woo;Kim, Sang-Ho;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.15-24
    • /
    • 2012
  • The MEPDG(Mechanistic-Empirical Pavement Design Guide) developed based on the AASHTO Design Guide helps engineers find optimal alternatives by using traffic volume, climate, material property, and pavement structure as its input parameters. However, because technical problems were found in the MEPDG, efforts to improve the program by settling the problems have been continued. Meanwhile, another mechanistic-empirical design program has been developed by the KPRP(Korea Pavement Research Program) in Korea. To develop and improve the Korean design program reasonably, it is necessary to analyze the MEPDG and then compare programs each other. For concrete pavement, fatigue cracking is predicted by using very complicated logic different from other performance indicators. Therefore, in this paper, transfer functions of the fatigue cracking used in the version of 0.5, 1.0, and 1.1 of the MEPDG were analyzed. Sensitivity of the input parameters to the cumulative fatigue damage was compared to each other by the MEPDG version and KPRP.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

Development of Mechanistic-empirical Joint Spacing Design Method for Concrete Pavements (역학적-경험적 콘크리트 포장 줄눈간격 설계방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.51-59
    • /
    • 2011
  • Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random crack is minimized by sawcutting the slab and inducing the crack with regular spacing. The random crack, joint damage, decrease of load transfer efficiency are caused by too wide joint spacing while too narrow joint spacing leads to increase of construction cost and decrease of comfort. A mechanistic-empirical joint spacing design method for the concrete pavement was developed in this study. Structurally and environmentally weakest sections were found among the sections showing good performance, and design strengths were determined by finite element analysis on the sections. The joint width for which the load transfer efficiency is suddenly lowered was determined as allowable joint with referring to existing research results. The maximum joint spacing for which the maximum tensile stress calculated by the finite element analysis did not exceed the design strength were found. And the maximum joint width expected by the maximum joint spacing were compared to the allowable joint width. The new method developed in this study was applied to two zones of Hamyang-Woolsan Expressway being designed. The same joint spacing as a test section constructed by 8.0m of joint spacing wider than usual was calculated by the design method. Very low cracking measured at 6 years after opening of the test section verified the design method developed in this study.

A Study on Establishing the Subbase Compaction Control Method based on the In-situ Elastic modulus (현장탄성계수에 근거한 보조기층 다짐관리방안 연구)

  • Choi, Jun-Seong;Kim, Jong-Min;Han, Jin-Seok;Kim, Bu-Il
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • The resilient modulus which is presented mechanical properties of compacted subbase material is the design parameter on the Mechanistic - Empirical pavement design guide. The compaction control method on the Mechanistic - Empirical pavement design guide will be the way to confirm whether the in-situ elastic modulus measured after the compaction meets the resilient modulus which is applied the design. The resilient modulus in this study is calculated by the neural network suggested by Korea Pavement Research Program, and degree of compaction as the existing compaction control test and plate bearing capacity test(PBT) was performed to confirm whether the in-situ elastic modulus is measured. The Light Falling Weight Deflectometer(LFWD) is additionally tested for correlation analysis between each in-situ elastic modulus and resilient modulus, and is proposed correlation equation and test interval which can reduced overall testing cost. Also, the subbase compaction control procedure based on the in-situ elastic modulus is proposed using the in-situ PBT and LFWD test result.

An Experimental Evaluation and Comparative Evaluation on Pavement Design of Warm-Mix Asphalt Mixture Using Aspha-min (아스파민을 사용한 중온아스팔트혼합물의 실험적 평가와 포장설계 비교평가)

  • Jin, Myung-Sub
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • Warm-Mix Asphalt(WMA) mixtures, which meet environmental protection and have high energy efficiency, are emerging as an alternative to hot-mix asphalt mixtures. The objective of this study is to evaluate WMA made with Aspha-min in the laboratory and to compare the design results accomplished by new Mechanistic-Empirical Pavement Design Guide(MEPDG) with control mixture. An asphalt mixture with a nominal maximum size of 12.5mm and PG64-28 binder was used. Resilient modulus tests for a control mixture and WMA with 0.3% and 0.5% of Aspha-min were conducted. The results obtained by MEPDG after inputting the test output into the design indicated that the predicted rut depth of WMA using Aspha-min was much lower than that of control mixture, and showed that WMA was more resistant to rutting than control mixture.

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • Explosives and Blasting
    • /
    • v.15 no.1
    • /
    • pp.44-60
    • /
    • 1997
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF