• Title/Summary/Keyword: 역학모델

Search Result 2,081, Processing Time 0.029 seconds

인체 근골격계 모델의 소개 및 연구 동향

  • Jeong, Ji-Yeong;Kim, Pan-Gwon;Lee, Hui-Jeong;Sin, Chung-Su
    • Journal of the KSME
    • /
    • v.53 no.8
    • /
    • pp.28-33
    • /
    • 2013
  • 이 글에서는 생체 내 근력과 관절 모멘트, 관절 접촉역학 분석에 이용되는 근골격계 생체역학 모델을 소개하고 그 연구 동향에 대해 소개하고자 한다.

  • PDF

An Inverse Dynamic Analysis of Lower Limbs During Gait (보행 중 하지 관절의 역동역학 해석)

  • 송성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • An inverse dynamic model of lower limbs is presented to calculate joint moments during gait. The model is composed of 4 segments with 3 translational joints and 12 revolute joints. The inverse dynamic method is based on Newton-Euler formalism. Kinematic data are obtained from 3 dimensional trajectories of markers collected by a motion analysis system. External forces applied on the foot are measured synchronously using force plate. The use of developed model makes it possible to calculate joint moments for variation of parameters.

A study on the creep behavior of particulate composites (입자강화 복합재료의 크리프거동에 관한 연구)

  • Yang, Beom-Joo;Kim, Bong-Rae;Lee, Haeng-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.123-126
    • /
    • 2011
  • 본 논문에서는 점탄성 매트릭스와 탄성 강화입자로 구성된 복합재료의 크리프 거동예측을 미세역학 기반의 시뮬레이션을 통하여 수행하였다. 에폭시 고분자로 이루어진 복합재료의 경우 재료 특성상 탄성적 거동뿐 아니라 점성적 거동도 함께 발생하게 된다. 이렇듯 점탄성 거동을 보이는 재료의 경우 탄성만을 고려한 해석방법으로는 한계가 있으며 점성적인 특성 또한 고려되어야 한다. 점탄성 복합재료의 해석을 위해서 손상을 고려한 미세역학 기반의 해석 (Ju and Chen, 1994) 과 Mesquita and Coda (2002)의 근사식을 사용하였다. 이를 통해 구한 재료 물성은 복합재료의 크리프 거동예측을 위한 Kelvin-Voight (KV) 모델과 Standard Linear Solid (SLS) 모델에 적용되었다. 최종적으로 본 연구에서 제안한 손상을 고려한 점탄성 모델의 예측과 시험결과를 비교 수행하여 결과의 타당성을 검증하였다.

  • PDF

Hydrodynamic controls on phytoplankton-nutrient dynamics in a river-dominated estuarine system (담수성 연안하구의 식물성플랑크톤-영양염 역학에 대한 수리학적 조절)

  • Sin, Yong-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.347-351
    • /
    • 2002
  • 유입되는 담수의 영향을 크게 받는 한 하구 (미국 버지니아주의 요크강)의 크기별 식물성플랑크통의 역학에 대한 수리역학적 조절에 대한 조사를 위해 플랑크톤 생태계모델이 계발되었다. 모델은 요크강 하류의 상부층에서의 탄소 및 영양염의 분포를 나타내는 12개의 구성체 변수로 이루어져 있다. 빛, 온도, 바람, 해류 그리고 조수와 같이 이송과 혼합을 일으키는 물리적 변수들로 포함하고 있다. 모델은 포트란으로 계발되었고 Runge- Kutta technique을 이용해 미분방정식을 풀었다. 모델분석 결과, 크기가 큰 마이크로 식물성플랑크톤의 수화는 수체내의 생산보다는 이송이나 확산 때문에 나타나는 것임을 알 수 있었다.

  • PDF

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

A Study on Mechanical Analysis of Cable Logging Systems - with an Example of a Standing Skyline - (가선집재시스템 역학구조 해석에 관한 연구 - 고정식 가선집재시스템을 중심으로 -)

  • Chung, Joo Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.1
    • /
    • pp.34-43
    • /
    • 1993
  • In this paper, the characteristics of cable logging operations are discussed from a standpoint of mechanics. An example of standing skyline operations is used to illustrate the mechanical principles. Using force and moment boundary conditions, the maximum allowable payload was formulated as a function of slope profile, system geometry and operation options. This formulation includes fundamental equations for log drag and single segment mechanics. The catenary link model is the basic assumption in simulating cable segment stretches. In order to demonstrate the solution procedures of the formulation, a computer model was developed. The model uses Secant algorithm to determine the solution of the complex nonlinear equation set. Finally, the computer model was demonstrated using a hypothetical data set.

  • PDF

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

A Micromechanics based Elastic Constitutive Model for Particle-Reinforced Composites Containing Weakened Interfaces and Microcracks (계면손상과 미세균열을 고려한 입자강화 복합재료의 미세역학 탄성구성모델)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon;Kim, Hyeong-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • A constitutive model based on a combination of a micromechanics-based weakened interface elastic model (Lee and Pyo, 2007) and a crack nucleation model (Karihaloo and Fu, 1989) is proposed to predict the effective elastic behavior of particle-reinforced composites. The model specifically considers imperfect interfaces in particles and microcracks in the matrix. To exercise the proposed constitutive model and to investigate the influence of model parameters on the behavior of the composites, numerical simulations on uniaxial tension tests were conducted. Furthermore, the present prediction is compared with available experimental data in the literature to verify the accuracy of the proposed constitutive model.

A Study on Interpolated Step Response Model of Dynamic Matrix Control(DMC) for a Boiler-Turbine System of Fossil Power Plant (계단 응답 모델의 보간을 이용한 화력발전 보일러-터빈 시스템의 동역학 행렬제어(DMC)에 관한 연구)

  • Moon, Un-Chul;Oh, Seok-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.109-115
    • /
    • 2008
  • This paper proposes an adaptive Dynamic Matrix Control (DMC) and its application to boiler-turbine system In a conventional DMC, object system is described as a Step Response Model (SRM). However, a nonlinear system is not effectively described as a single SRM. In this paper, nine SRMs at various operating points are prepared. On-line interpolation is performed at every sampling step to find the suitable SRM. Therefore, the proposed adaptive DMC can consider the nonlinearity of boiler-turbine system. The simulation results show satisfactory results with a wide range operation of the boiler-turbine system.