• Title/Summary/Keyword: 역추력

Search Result 13, Processing Time 0.022 seconds

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Study on the Thrust Generation of a Flat Plate in Heave Oscillation Using a Lattice-Boltzmann Method (격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Lee, Jong-Shin;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.397-403
    • /
    • 2007
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.

Performance Design of TCO System of the Solid Rocket Motor (고체 로켓모터의 TCO 성능 설계)

  • Hwang, Yong-Seok;Yun, Myeong-Won;O, Jong-Yun;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.101-106
    • /
    • 2006
  • This paper describes performance design of a solid rocket motor on which thrust cut-off system is installed, and evaluates performance of a rocket motor according to a size of TCO ports. TCO system installed on motors was made to carry out firing tests, and the trend of thrust due to various sizes of TCO port was analyzed to find the existence of the port size for maximum reversal thrust. Conservation equations were used to design performance of motors and to analyze test results. This technique for performance design will be usefully applied to the design of similar TCO systems.

Performance Design of TCO System of the Solid Rocket Motor (고체 로켓모터의 TCO 성능 설계)

  • Hwang Yong-Seok;Yoon Myong-Won;Oh Jong-Yun;Bae Joo-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • This paper describes performance design of a solid rocket motor on which thrust cut-off system is installed, and evaluates performance of a rocket motor according to a size of TCO ports. TCO system installed on motors was made to carry out firing tests, and the trend of thrust due to various sizes of TCO port was analyzed to find the existence of the port size for maximum reversal thrust. Conservation equations were used to design performance of motors and to analyze test results. This technique for performance design will be usefully applied to the design of similar TCO systems.

  • PDF

Thrust Measurement in a Impulse Facility (충격파 시험장치를 이용한 추력 측정)

  • Jin, Sangwook;Hwang, Kiyoung;Park, Dongchang;Min, Seongki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.310-319
    • /
    • 2017
  • This paper introduces the method how to measure the thrust in impulse facility. In a Facility having such a short duration time of steady flow, there's no time to reach a steady state of the forces acting on model so that the test model vibrates until the end of the flow. The forces exerted on an engine exist with vibration so that the usual force balance can not be used. SWFB(Stress Wave Force Balance) technique is utilized in a shock tunnel to get the thrust. As an example, a model force balance has been calculated its strain against impulse force by using FEM(Finite Element Method). A transfer function between the impulse force and strain has been obtained by the way of de-convolution.

  • PDF

Design Factor Analysis of Aerospike Pintle Nozzle for Increasing Thrust in Off-Design (탈설계 조건에서 추력 증대를 위한 에어로 스파이크 핀틀 노즐의 설계인자 분석 연구)

  • Kim, Jeongjin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • A design factor analysis was conducted to reduce the thrust reduction in the off-design, due to the driving of the aerospike pintle nozzle. The close (NPR 100) as well as the open (NPR 11) stroke were fixed, as under-expansion conditions. The pintle contour, pintle head radius (R), cowl angle (θ), and cowl exit length (L) were selected as design factors. The change in thrust was analyzed, using a verified numerical analysis technique. First, the pintle head radius and the length of the cowl exit had little influence on the thrust. The cowl angle changed the mass flow rate by affecting the effective nozzle throat area, and created a reverse pressure gradient at the cowl exit. As a result of applying the dual aerospike contour, it was confirmed that the thrust in the design-off increased by approximately 1.2%, compared to the reference case and by approximately 3.4% compared to the worst case.

Numerical Study of a Flapping Flat Plate for Thrust Generation (플랩핑 평판의 추력발생에 대한 수치적 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Han, Chul-Heui
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.209-212
    • /
    • 2006
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Most of the previous published papers discussed mainly on the effect of flapping parameters such as flapping frequency and amplitude on the thrust at a fixed Reynolds number. However, it is not much known on the values of the flapping parameters that the flapping wing requires to generate the thrust at the low Reynolds number flow. In this paper, the onset of the thrust generation is investigated using the lattice Boltzmann method. The wake patterns and velocity profiles behind a flat plate in heaving oscillation are investigated for the heaving amplitude of 0.5C. The time-averaged thrust coefficient value is investigated by changing the reduced frequency from 0.125 to 3.0 for three values of heaving amplitude (h/C=0.25, 0.325, 0.50). It is also found that the critical Strouhal number over which the flat plate starts to produce the thrust is around 0.1 and the thrust is an exponential function of the Strouhal number.

  • PDF

A Study on Vortical Flow Patterns of a Heaving Foil (히빙익 후류의 유통패턴에 관한 연구)

  • Yang, Chang-Jo;Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.31-32
    • /
    • 2005
  • It is known that an oscillating airfoil can produce a driving force through the generation of a reversed $K\acute{a}rm\acute{a}n$ vortex street, and this can be expected to be a new highly effective propulsion system. We have been examined various conditions such as frequency number, amplitude in NACA 0010. As Strouhal number is greater than 0.08, wake profile with velocity deficit can be transformed into the wake with velocity excess. We also presented the experimental results on the unsteady vortices structure of the heaving airfoil at various parameters.

  • PDF

Unsteady Fluid Forces Acting on a Pitching Foil (피칭 운동익에 작용하는 비정상 유체력)

  • Yang, C.J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.47-54
    • /
    • 2005
  • An oscillating foil can produce a driving force through the generation of a reversed $K\'{a}rm\'{a}n$ vortex street, and it can be expected to be a new highly effective propulsion system. A simple pitching foil model was made and it was operated within a water channel. The wake formation behind a pitching foil was visualized and unsteady fluid forces were measured using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as reduced frequency, amplitude and pivot point in NACA 0010. The results showed that thrust coefficients increased with a reduced frequency. We also presented the experimental results on the characteristics of a pitching foil at various parameters.