• 제목/요약/키워드: 역전파 알고리즘

검색결과 417건 처리시간 0.031초

적응 역전파 알고리즘을 이용한 적응 수신기의 다중 신호 개선 (The Multisignal Improvement of Adaptive Receiver using Adaptive Back-Propagation Algorithm)

  • 김철영;장혁;석경휴;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.188-194
    • /
    • 2000
  • 이동 통신에서 제한된 대역폭 채널에 내부 심볼 간섭을 감소시키기 위해, 등화기 기법을 필요로한다. 채널간의 비선형 왜곡을 효율적으로 다루는 대안을 가진 신경망을 사용하여 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 연구한다. 신경망은 적응 역전파 알고리즘을 통해 신호를 복조하도록 학습한다. 특히 수정된 적응 역전파 알고리즘이 근접된 최적 수행성을 갖는 단일 및 다중 사용자 검출을 위한 샘플링 기법은 다중 사용자 환경에서 필요한 수신기들의 수행성을 평가하기 위한 시뮬레이션을 위하여 사용이 된다. 채널간의 비선형 왜곡에 효율적으로 다루기 위한 대안을 가진 신경망을 적용하여 본 논문에서 는 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 제안하고, 컴퓨터 시뮬레이션에 의해서 분석된다. 반복적 최소 평균 자승(RLS) 알고리즘을 적용한 기존 수신기 및 적응 역전파 신경망과 비교하여, 채널 왜곡이 비선형 일 때에 비트 에러율(BER)이 현저하게 개선됨을 나타낸다. 적응 역전파 알고리즘 기법을 통해 기존 수신기와 신경망을 사용한 수신기의 수행을 컴퓨터 시뮬레이션을 통해 비교 분석하여 제안된 신경망 수신기의 성능이 우수함을 인증한다.

  • PDF

회귀분석을 위한 로버스트 신경망

  • 황창하;김상민;박희주
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.327-332
    • /
    • 1997
  • 다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.

  • PDF

영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘 (The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition)

  • 이혜현;류재욱;조아현;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF

개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교 (A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm)

  • 윤여창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

RGB 컬러 정보와 오류 역전파 알고리즘을 이용한 신 차량 번호판 인식 (Recognition of a New Car Plate using RCB Color Information and Backpropagation)

  • 허정민;이상수;한아름;김정민;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.457-461
    • /
    • 2005
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정한다. 보정된 차량 영상에서 순수 Red픽셀과 현재 픽셀의 차이와 순수 Green 픽셀과 현재의 픽셀의 차이를 각각 구하여 Red 후보 영역과 Green 후보 영역으로 구분한다. 구분된 2개의 후보 영역의 픽셀 값을 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 그리고 오류 역전파 알고리즘에 의해서 Green 영역으로 판명된 영역을 제외한 영역들은 잡음으로 처리한다. 잡음이 제거된 영역에 대해 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 추출된 번호판 영역에서 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

  • PDF

유전자와 역전파 알고리즘을 이용한 효율적인 윤곽선 추출 (The Efficient Edge Detection using Genetic Algorithms and Back-Propagation Network)

  • 박찬란;이웅기
    • 한국정보처리학회논문지
    • /
    • 제5권11호
    • /
    • pp.3010-3023
    • /
    • 1998
  • 유전자 알고리즘은 염색체 집단을 이용하는 탐색이므로 전역적인 최적해의 탐색 성능은 우수하여 최적해에 근접한 한점까지의 수렴속도는 빠르지만 탐색 메카니즘이 없기 때문에 최적해 근처의 탐색에서는 수렴 속도가 떨어지는 단점이 있고, 역전파 알고리즘은 개체 수준의 탐색이므로 지역적 미세조정의 탐색능력은 우수하지만 전역적 탐색기능이 없어 지역적 최적해로 수렴하는 경우가 있다. 본 논문에서는 수렴 속도가 향상된 윤곽선 추출을 위하여 유전자와 역전파 알고리즘을 병행해서 실행하는 윤곽선 추출방법을 제안하였다. 윤곽선 추출 방법은 먼저 유전자 알고리즘을 이용하여 최적의 연결강도와 오프셋 값을 계산한다. 다음으로 이 값을 역전파 학습 알고리즘 학습의 파라미터의 초기값으로 한 반복 학습으로 최적의 윤곽선 구조를 추출하였다. 제안된 알고리즘은 유전자 알고리즘 또는 역전파 알고리즘 단독으로 실행한 경우보다 수렴속도가 향상된 결과를 보여 주었다.

  • PDF

유전자 알고리즘을 이용한 오차 역전파 신경망의 초기화 (An Initialization of Backpropagation Network Using Genetic Algorithm)

  • 박형태;이행세
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1275-1278
    • /
    • 2003
  • 본 논문에서는 오차 역전파 알고리즘의 전역 최소값을 찾지 못하는 문제점에 대해서 설명하였고, 이 문제를 해결하기 위한 방법으로 유전자 알고리즘에 대해서 설명하였다. 오차 역전파 알고리즘은 기본적으로 경도 하강법을 따른다. 따라서 신경망의 각 가중값 행렬이 만드는 고차의 오차 평면이 대부분의 문제에서 다수의 국부 최소값들을 가지는게 일반적인데, 가중값의 변화가 한방으로 진행하기 시작하여, 오차가 증가되어지는 언덕이 학습 계수보다 크다면 더 이상 학습은 진행되지 않고 거기에서 빠져나가지 못한다. 따라서 초기의 위치가 중요한 역할을 하는데, 이 문제를 해결하기 위해서 유전자 알고리즘을 이용한 신경망 초기화 방법을 제안하였다. 끝으로, 간단한 실험으로 제안된 방법을 구현하고 결과에 대해서 논하였다

  • PDF

문자인식을 위한 로버스트 역전파 알고리즘 (A Robust Backpropagation Algorithm and It's Application)

  • 오광식;김상민;이동로
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.163-171
    • /
    • 1997
  • 공학 분야에서 신경망에 대한 관심은 신호처리, 로보틱스, 컨트롤, 문자인식, 패턴인식 그리고 컴퓨터 그래픽 분야등에서 연구되고 있으며, 이들은 함수근사응용과 밀접한 관련이있다. 통계학 분야에서는 패턴인식의 판별분석, 주성분분석, 회귀분석 그리고 군집분석을 위한 신경망등에 대한 연구가 활발히 이루어지고 있다. 문자인식을 위한 다층 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련기간, 극소점 문제, 이상치(outlier)에 민감하다는 단점을 지니고 있다. 이상치에 민감한 일반적인 역전파 알고리즘의 단점을 극복하기 위해 이상치에 민감하지 않은 로버스트 알고리즘의 필요성이 대두되었다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 제안한 로버스트 역전파 알고리즘을 문자인식에 적용하여 일반적인 역전파 알고리즘의 문자인식 성능과 비교하였다.

  • PDF

퍼지 제어 시스템을 이용한 학습률 자동 조정 방법에 의한 개선된 역전파 알고리즘 (Enhanced Backpropagation Algorithm by Auto-Tuning Method of Learning Rate using Fuzzy Control System)

  • 김광백;박충식
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.464-470
    • /
    • 2004
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 제어 시스템을 적용하여 학습률을 자동으로 조정하는 개선된 역전파 알고리즘을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성과 부정확성의 개수를 퍼지 제어 시스템에 적용하여 학습률을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자 패턴 분류에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

퍼지 논리 시스템을 이용한 학습률 자동 조정 방법에 관한 연구 (A Study on Auto-Tuning Method of learning Rate by Using Fuzzy Logic System)

  • 주영호;김태영;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.484-489
    • /
    • 2003
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

  • PDF