Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.2
/
pp.346-355
/
2002
This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using face, lips, to improve the accuracy of recognition. Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A voice recognition is found with MFCC by using mel frequency. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.523-525
/
2002
얼굴 검출은 하나의 영상으로부터 얼굴 존재 유무를 판단하고 그 위치와 방향, 크기 등을 알아내는 기술로 정의된다. 그러나 영상내의 특정 위치에 대한 얼굴 여부의 판단은 여러 가지 환경 변화와 매우 다양한 종류의 얼굴로 인해 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 얼굴여부를 판단하기 위한 학습 데이터를 최적화하여 일반적인 외형기반의 알고리즘에 적용할 수 있는 방법을 제안한다. 제안된 방법은 영상에 대한 기본적인 전처리부터 입력으로 사용될 데이터의 추출에 이르기까지 최대한의 환경변화를 고려함으로써실제 적용 시 정확하고 빠른 판단이 가능하도록 하였다. 영상의 전처리로는 조명의 보상과 히스토그램 평활화가 사용되었고, 입력으로 사용하기 위한 학습 데이터의 정렬과 영상 샘플링 방법이 제안되었다. 얼굴 여부의 판단 실험은 각각 역전파 신경망, 마할라노비스 거리를 사용하여 영상의 얼굴 여부를 판정하고, 성공률을 측정하였다. 실험 결과 최적화 방법을 적용했을 때 적용하기 전보다 높은 성능의 성공률을 보였다.
Kim, Sangwon;Sanchez, Gustavo Adrian Ruiz;Ko, Byoung Chul
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.660-661
/
2020
본 논문에서는 기존 인공 신경망 기반 시계열 학습 기법인 Recurrent Neural Network (RNN)의 많은 연산량 및 고 사양 시스템 요구를 개선하기 위해 랜덤 포레스트 (Random Forest)기반의 새로운 시계열 학습 기법을 제안한다. 기존의 RNN 기반 방법들은 복잡한 연산을 통해 높은 성능을 달성하는 데 집중하고 있다. 이러한 방법들은 학습에 많은 파라미터가 필요할 뿐만 아니라 대규모의 연산을 요구하므로 실시간 시스템에 적용하는데 어려움이 있다. 따라서 본 논문에서는, 효율적이면서 빠르게 동작할 수 있는 시계열 다층 랜덤 포레스트(Time series Multilayered Random Forest)를 제안하고 산불 조기 탐지에 적용해 기존 RNN 계열의 방법들과 성능을 비교하였다. 다양한 산불화재 실험데이터에 알고리즘을 적용해본 결과 GPU 상에서 방대한 연산을 수행하는 RNN 기반 방법들과 비교해 성능적인 한계가 존재했지만 CPU 에서도 빠르게 동작 가능하므로 성능의 개선을 통해 다양한 임베디드 시스템에 적용 가능하다.
Journal of the Korean Society of Marine Environment & Safety
/
v.28
no.1
/
pp.175-183
/
2022
The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.
Journal of the Korea institute for structural maintenance and inspection
/
v.10
no.2
/
pp.133-144
/
2006
In order to catch out such Bond Strength, the preceding researchers had ever examined the Bond Strength of FRP Plate through their experimentations by setting up of various fluent. However, since the experiment for research on such Bond Strength takes much of expenditure for equipment structure and time-consuming, also difficult to carry out, it is conducting limitedly. This Study purposes to develop the most suitable Artificial Neural Network Model by application of various Neural Network Model and Algorithm to the adhering experiment data of the preceding researchers. Output Layer of Artificial Neural Network Model, and Input Layer of Bond Strength were performed the learning by selection as the variable of the thickness, width, adhered length, the modulus of elasticity, tensile strength, and the compressive strength of concrete, tensile strength, width, respectively. The developed Artificial Neural Network Model has applied Back-Propagation, and its error was learnt to be converged within the range of 0.001. Besides, the process for generalization has dissolved the problem of Over-Fitting in the way of more generalized method by introduction of Bayesian Technique. The verification on the developed Model was executed by comparison with the resulted value of Bond Strength made by the other preceding researchers which was never been utilized to the learning as yet.
In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.449-451
/
1999
지금까지 많은 필기 숫자 인식 방법들이 제안되었지만 고도의 신뢰도가 요구되는 은행 수납 장표상의 숫자 인식에 적합한 방법은 아직 발표된 것이 미미한 실정이다. 본 연구에서는 세 개의 분류기의 결과를 융합하여 100%에 가까운 신뢰도를 낼 수 있는 필기숫자 인식 시스템을 제안하였다. Karhunen-Loeve Transform(KLT)를 통하여 특징을 추출하였으며 오류 역전파 신경망(BP), LVQ를 적용한 SOFM(SOFM-LVQ)과 Weignted Several Nearest Neighbor(WSNN)을 분류기로 사용하였다. 융합을 위해서는 다수결(Majority Voting)이 아닌 만장일치제(Unanimous Voting)을 적용하여 신뢰도를 높혔다. ETL-6 DB를 사용하여 실험하였으며 실험 결과 99.95%의 높은 신뢰도를 기록하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.05a
/
pp.448-451
/
2002
This study will offer multi-feature recognition instead of an using mono-feature to improve the accuracy of recognition. Each Feature can be found by following ways. For a face, the feature is calculated by the principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out on equation to calculate the edges of the lips first. Then the other feature is calculated by the distance ratio of facial parameters. We've sorted backpropagation neural network and experimented with the inputs used above and then based on the experimental results we discuss the advantage and efficiency.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.310-316
/
1998
본 논문에서는 기존의 퍼지 제어규칙에비해 좋은 성능을 갖는 T-S(Takagi-Sugeno)퍼지 모델을 자기조직화 지도와 역전파 신경망을 이용하여 표현하고 제어기 구현을 위한 규칙의 자동 생성 방법을 제안한다. 제안된 방법은 신경망에 기초하여 T-S 퍼지 제어 규칙을 포현하므로써 학습 기능을 이용하여 지식 획득을 용이하게 하고, 입력 변수간의 퍼지 관계에 기반 하여 추론이 이루어지므로 각 퍼지 변수에 대한 소속 함수의 정의 과정이 불필요하게 된다. 또한 제어기로 구현되었을 때 규칙의 수나 퍼지화 및 비퍼지화 등이 구성된 추론망을 통하여 자동으로 수행될 수 있다. 때문에 퍼지 시스템의 구현이 쉽게 이루어 질 수 있게 한다. 제안된 방법을 자동차 궤도 안정화 모의 실험에 적용해 봄으로써 추론망이 규칙을 생성하여 타당한 추론을 하게 됨을 확인한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.330-340
/
1998
자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.