• Title/Summary/Keyword: 역자승법칙

Search Result 13, Processing Time 0.022 seconds

A Study on the Distribution of Scatter Ray in Chest Radiography of a Health Examination Bus (건강검진 차량 내 흉부 방사선검사 시 공간산란선 분포 연구)

  • Cho, Ji-Hwan;Jin, Seong-jin;Min, Byeong-In
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.377-383
    • /
    • 2017
  • The purpose of this study was to evaluate the distribution of spatial scatter ray on the chest radiographs of patients on health examination bus. In this paper, we propose a method for minimize unnecessary exposure by measuring the scattered dose after exposure the actual subject and comparing the body mass index (BMI) with the tube current amount mAs. The results of this study showed that the mean BMI of the subjects was $23.31{\pm}3.12$. The mean mAs value was $2.92{\pm}1.19$, which males was higher than females. The mean value of the scatter ray at position 1 in the radiography room was $771.81{\pm}151.15{\mu}Sv/hr$. The mean value of the scatter rays at the position 2 outside the entrance of the radiography room was measured as $53.86{\pm}25.66{\mu}Sv/hr$. As the BMI and mAs was increase the spatial scatter dose was increased at position 1 and position 2 in the photographing room. In order to minimize the exposure dose of scatter ray, radiation workers should shoot the radiation as low as possible within the range that does not impair the quality of the image. It will be necessary to make efforts to not wait for a waiting person near the entrance door of the photographing room.

The Study on Applicability of Manufactured Lead(II) Iodide Dosimeter for Dose Measurement in Brachytherapy (방사선근접치료 분야의 선량 측정을 위해 제조된 Lead(II) Iodide 선량계의 적용가능성 연구)

  • Yang, Seung-Woo;Han, Moo-Jae;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.789-794
    • /
    • 2021
  • Brachytherapy is a treatment in which radioactive isotopes are placed inside the body to intensively irradiate the tumor with radiation. Because brachytherapy uses a radioisotope source with a high dose rate, it is very important to know the exact location and dose of the source. However, in clinical practice, it is evaluated inaccurately with the naked eye through rulers and autoradiographs. Therefore, in this study, a dosimeter that can be used for brachytherapy was developed using a lead(II) iodide (PbI2) material, and the applicability was evaluated by analyzing the reproducibility, linearity, and PID items. As a result of reproducibility evaluation, the RSD value was 1.41%, satisfying the evaluation criteria of 1.5%. As a result of the linearity evaluation, the R2 value was 0.9993, which satisfies the evaluation criterion of 0.9990. As a result of PID evaluation, it showed only a difference of 0.06 cm compared with the theoretical value of the inverse square law of distance at the 50% dose reduction point. The dosimeter manufactured in this experiment shows results that satisfy the standard in all evaluations, so it is judged that the possibility of applying the dosimeter in the radiation brachytherapy area is sufficient.

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.