• Title/Summary/Keyword: 역세 배출수

Search Result 19, Processing Time 0.041 seconds

Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media (세라믹 여재를 활용한 상향류식 여과형 비점오염저감시설의 최적 운전 및 역세척 조건)

  • Hwang, Yuhoon;Seo, Younggyo;Kim, Hyowon;Roh, Kunwan;Shin, Hyunsang;Kim, Dogun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.478-488
    • /
    • 2017
  • Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of $30kg/m^2$ and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with $400-450kg/m^2$ SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan.

A Study about Applicability of Treatment for Backwash Water Using Tubular Membrane System with Dead-End Operation Mode (역세 배출수 처리를 위한 관형막의 전량여과 운전 적용에 대한 연구)

  • Eom, Jung Yeol;Kim, Kwan Yeop;Kim, Young Hoon;Song, June Sup;Kim, Hyung Soo;Han, Myung Ae;Yang, Hyung Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.437-444
    • /
    • 2008
  • Many other countries have investigated the new backwash water treatment process to save the existing water resource. There are various methods for reusing backwash water, but the membrane system has received the most interest for its efficiency. The objective of this study was to certify the application of membrane filtration system for the backwash water treatment. The experiment equipment was composed of Lab scale tubular membrane filtration system. Generally, cross-flow operation mode is used in the tubular membrane system but cross-flow operation mode demands high electric cost mainly for the pump energy. So to cut off electric cost, dead-end operation mode was used in this experiment. Filtration and bleed operation cycle was used in this membrane system. Backwash water was concentrated during the filtration process and when backwash water reached our target suspended solid concentration, it was discharged from this system. For efficient operation of filtration and bleed, mathematical matrix was drawn up and with this matrix we could simulate various sets of filtration and bleed time.

A New Program to Design Residual Treatment Trains at Water Treatment Plants (정수장 배출수처리시설 설계 프로그램의 개발)

  • Bae, Byung-Uk;Her, Kuk;Joo, Dae-Sung;Jeong, Yeon-Gu;Kim, Young-Il;Ha, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 2007
  • For more accurate and practical design of the residual treatment train at water treatment plants(WTPs), a computational program based on the commercial spreadsheet, Microsoft Excel, was developed. The computational program for the design of a residual treatment train(DRTT) works in three steps which estimate the residual production to be treated, analyze the mass balance, and determine the size of each unit process. Of particular interest in the DRTT program, is provision for a filter backwash recycle system consisting of surge tank and sedimentation basin for more efficient recycling of backwash water. When the DRTT program was applied to the Chungju WTP, the program was very beneficial in avoiding errors which might have occurred during arithmetic calculations and in reducing the time needed to get the output. It is anticipated that the DRTT program could be used for design of new WTPs as well as the rehabilitation of existing ones.

Operating result of Hydroxyapatite Crystallization-Filtration (HCF) process and characterization of its sludge for wastewater effluent (하수 인 고도처리를 위한 인 결정여과공정 운전결과 및 부산슬러지 특성 검토)

  • Chang, Hyang-Youn;Kim, Weon-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.401-401
    • /
    • 2022
  • 우리나라 대규모 하수처리장에 상용화되어있는 응집공정의 운영상 난점을 극복하고자 대체공정으로 고안된 인 결정여과공정(HCF, Hydroxyapatite Crystallization-Filtration process)의 pilot plant를 구축하고 부산슬러지의 자원화를 위해 그 특성을 검토하였다. 기존의 hydroxyapatite(HAP) 결정화공정 내 탈탄산(decarbonation) 단계를 생략하는 HCF공정의 경우에 고농도의 Ca2+ 주입과 처리수내 탄산염으로 인해 HAP을 포함하는 석회계 슬러지가 발생하는데, 이는 산성화된 토양의 개량제(중화제)로 널리 사용될 수 있다. 본 연구를 위해 경기도 I하수처리장 2차침전지 후단에 구축된 처리용량 27.1 - 135.6 m3/day HCF pilot plant의 전처리 조건은 pH 10.0 - 11.0, Ca2+ 농도 80 mg/L이었다. 결정여과조는 선속도 1.0 - 5.0 m/hr, 상향류로 운전되며, 여재는 2.0 - 3.0 mm의 석회석 모래를 충전하였다. 역세척은 중앙에 Air lifting pipe를 설치하여 역세척수가 처리수와 분리배출되도록 설계하였고, 침전시켜 역세척 슬러지를 회수하였다. 처리수의 평균 T-P, PO4-P 및 SS는 각각 0.05, 0.04, 1.1 mg/L으로 모든 항목에서 방류수 수질기준 이하로 안정적으로 유출되었다. 회수된 HCF 슬러지는 SEM-EDX, XRD, FT-IR을 활용하여 그 특성을 분석하였다. SEM-EDX로 분석된 슬러지의 원자분율은 CaCO3 또는 HAP으로 추측되었다. 또한, XRD spectrum 분석결과, 슬러지의 주요 구성성분은 calcite, HAP, phosphoric acid(H3PO4) 및 brusite로 나타났다. FT-IR 분석결과, 슬러지는 대부분 인산염 및 탄산염의 무기물로 구성되어 있으며, 유입수의 인 농도가 높을수록 슬러지 내 HAP의 함량이 calcite보다 높은 것으로 나타났다. 고농도의 Ca2+을 주입하여 탈탄산단계를 생략한 HCF의 부산슬러지는 HAP 이외에도 CaCO3와 칼슘-인 화합물로 구성되어 있는 것으로 나타났다. 하수 인 고도처리를 위한 HCF공정의 하수처리시설 인 고도처리 적용이 검증되었으며, 부산슬러지를 산성화된 토양의 개량제(중화제) 또는 비료로서의 재활용 및 자원화 가능성이 시사되었다.

  • PDF

Estimation on the Design Capacities of Residuals Treatment Facilities by the Quantity of Dewatered Sludge Generated from Water Treatment Plants (정수장에서 발생된 탈수슬러지의 량에 의한 배출수처리시설용량에 대한 평가)

  • Moon, Yong-Taik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.715-723
    • /
    • 2004
  • The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS occurs under quiescent conditions in the primary clarifier, where suspended solids are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. The relative solid and liquid fractions of a slurry are most commonly described by the solids concentration, expressed as mg/L or percent solids. The purpose of the present investigation is to estimate a suitability on the design capacities of residuals treatment facilities by the quantity of dewatered sludge generated from water treatment plants.

Effect of $N_2$-back-flushing in Multi Channels Ceramic Microfiltration System for Paper Wastewater Treatment (제지폐수 처리를 위한 다채널 세라믹 정밀여과 시스템에서 질소 역세척 효과)

  • Park Jin-Yong;Choi Sung-Jin;Park Bo-Reum
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.

Effect of GAC Packing Mass in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리에서 활성탄 충진량의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.68-76
    • /
    • 2017
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, non-toxicity, and incombustibility. The spiral wound module was manufactured with the flat membrane and a woven paper. Hybrid water treatment process was composed of the PVdF nanofibers spiral wound microfiltration and granular activated carbon (GAC) adsorption column. Effect of GAC packing mass was investigated by comparing the case of recycling or discharging the treated water using the synthetic solution of kaolin and humic acid. After each filtration experiment, water back-washing was performed, and recovery rate and filtration resistances were calculated. Also, effect of GAC adsorption was compared by measuring turbidity and $UV_{254}$ absorbance. As a result, there was no effect of GAC packing mass on turbidity treatment rate; however, the treatment rate of $UV_{254}$ absorbance was 0.7~3.6% for recycling the treated water, and increased to 3.2-5.7% for discharging the treated water. In the case of recycling the treated water, reversible filtration resistance ($R_r$) and irreversible filtration resistance ($R_{ir}$) trended to decrease as increasing GAC packing mass; however, total fitration resistance ($R_t$) was almost constant, and recovery rate of water back-washing trended to increase a little.