• Title/Summary/Keyword: 역산기법

Search Result 193, Processing Time 0.028 seconds

Resolution Limits of Cross-Well Seismic Imaging Using Full Waveform Inversion (전파형 역산을 이용한 시추공 영상의 분해능)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • It was necessary to devise new techniques to overcome and enhance the resolution limits of traveltime tomography. Waveform inversion has been one of the methods for giving very high resolution result. High resolution image could be acquired because waveform inversion used not only phase but amplitude. But waveform inversion was much time consuming Job because forward and backward modeling was needed at each iteration step. Velocity-stress method was used for effective modeling. Resolution limits of imaging methods such as travel time inversion, acoustic and elastic waveform inversion were investigated with numerical models. it was investigated that Resolution limit of waveform inversion was similar tn resolution limit of migration derived by Schuster. Horizontal resolution limit could be improved with increased coverage by adding VSP data in cross hole that had insufficient coverage. Also, waveform inversion was applied to realistic models to evaluate applicability and using initial guess of travel time tomograms to reduce non-linearity of waveform inversion showed that the better reconstructed image could be acquired.

Full Waveform Inversion using a Cyclic-shot Subsampling and a Reference-shot Subset (주기적 송신원 추출과 참조 송신원 부분집합을 이용한 완전 파형 역산)

  • Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Time-domain Geoacoustic Inversion of Short-range Acoustic Data with Fluctuating Arrivals (시변동이 있는 근거리 음향신호의 시간영역 지음향학적 역산)

  • Park, Cheolsoo;Seong, Woojae;Gerstoft, Peter;Hodgkiss, William S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.308-316
    • /
    • 2013
  • A set of experiments (Shallow Water 2006, SW06) was carried out in shallow water near the New Jersey shelf break in summer 2006. Significant fluctuations in direct and surface reflected arrivals were observed from the chirp data (1100~2900 Hz) measured on a vertical line array. This paper presents a geoacoustic inverssion technique for short-range acoustic data with fluctuating arrivals and inversion results of experimental data. In order to reduce effects of random sea surface on the inversion, the acoustic energy back-propagated from the array to the source through direct and bottom-reflected paths is defined as the objective function. A multi-step inversion scheme is applied to the data using VFSR (Very Fast Simulated Reannealing) optimization technique. The inversion results show a source depth oscillation period equal to the measured ocean surface wave period. The inverted bottom sound speed is 1645 m/s and is similar to that estimated by other work at the same site.

Surface wave Tomography of the Korean Peninsula by Noise Cross-correlation Method (잡음 상호상관 기법을 이용한 한반도의 표면파 토모그래피에 대한 연구)

  • Cho, Kwang-Hyun;Kang, Ik-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.133-136
    • /
    • 2007
  • Cross correlation of seismic-background motions (Campillo and Paul, 2003; Shapiro et al., 2005) is applied to observations from the Korean Meteorological Administration seismic network to estimate the short-period Rayleigh and Love wave dispersion characteristics of the region. Standard processing procedures are applied to the cross correlation, except that signal whitening is used in place of one-bit sampling to equalize power in signals from different times. Multiple-filter analysis is used to extract the group velocities from the estimated Green's functions, which are then used to image the spatially varying dispersion at periods between 0.5 and 20 sec. The tomographic inversion technique used inverts all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

전자파 산란 및 역산란 문제의 해석 기법

  • 김세윤
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.39-46
    • /
    • 1991
  • 전자파 문제는 넓은 의미로 산란(scattering)문제와 역산란(inverse scattering)문제로 나눌 수 있다. 먼저 산란 문제는 에너지 또는 정보가 실린 전자파를 한 지점에서 다른 지점으로 보낼 때 통과하는 경로상의 매질 분포에 따라 왜곡 또는 변형되는 정도를 알아내는 것으로 반사(reflection), 굴절(refraction), 회절(diffraction)등 의 현상을 수반한다. 이 때 전자파를 왜곡시키는 물체를 산란체라고 부르며, 이러한 산란체로서는 전송선, 도파관, 광섬유 등과 같은 도파구조(guided wave structure)자체일 수 있으며 그들 내부에 고의로 부착된 첨가물일 수도 있다. 또한 공기나 지하와 같은 개방 구조 내의 물체나 비균일 매질 분포도 산란체가 될 수 있다. 이와는 반대로 역산란 문제는 알고 있는 전자파를 미지의 산란체에 가한 후, 여기서 산란된 전자파를 측정하여 얻은 자료로 부터 역으로 산란체의 위치, 크기, 모양, 매질 특성 등을 알아내는 것이다. 이러한 역산란 문제는지하 탐사(geophysical probing), 원격탐사(remote sensing), 레이다 영상(radar imaging), 의료진단(medical diagnosis), 비파괴 검사(nondestructive testing)등과 같은 많은 응용분야에 걸쳐 있다. 본 원고에서는 전자파 산란 및 역산란 문제에 대한 기존의 다양한 해석기법들을 체계적으로 분류하고, 이들의 적용범위와 한계에 대해 간략히 소개하기로 한다.

  • PDF

A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image (암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

Matched-target Model Inversion for the Position Estimation of Moving Targets (정합-표적모델 역산을 이용한 기동 표적의 위치 추정)

  • 장덕홍;박홍배;김성일;류존하;김광태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.562-572
    • /
    • 2003
  • A matched-target model inversion method was developed for a passive sonar to estimate the position of moving targets. Based on the well known matched-field processing in underwater acoustics, the method finds target position by matching the measured target directions and frequencies with the corresponding values of the proposed target model. For the efficient and accurate estimations, the parameter searching was accomplished using a hybrid optimizing method, which first starts with a global optimization such as generic algorithm or simulated annealing then applies a local optimization of a simple down hill algorithm. The suggested method was testified using simulations for three different moving scenarios. The simulation results showed that the method is robust in convergence, even under the situation of over 5 times standard deviation of Gaussian distribution of measured error, and is practical in calculation time as well.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.