• Title/Summary/Keyword: 역방향 굴착

Search Result 2, Processing Time 0.014 seconds

A Study on the Excavation of Tunnel Portal Zone Located at High Steep Slope (급경사 지형에 위치하고 있는 갱구부의 굴착 방안 연구)

  • Kim, Woo-Sung;Lee, Sang-Eun
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • Recently, planning road construction in South Korea is focused on upgrading of the existing road by rerouting or restructuring. For this, roads under current construction in Korea go for more straight in its alignments and routing. Straight routing makes it all the more required to construct many mountain tunnels and bridges in Korea where mountains are so widely spread. Some portal of mountain tunnel is not rarely planed at high steep slope of mountain valley where it is not easy to secure working space for tunnel excavation. Reverse excavation is an alternative measure for excavation of tunnel portal at high steep slope. Construction in reverse excavation method has three important points requiring careful consideration: 1)planning of pilot tunnel in proper width, height, and length etc., 2)measure against the effect of one-side earth pressure to the direction of tunnel portal, 3)securing tunnel safety against shallow ground condition at portal zone. This paper intends to suggest applicable range of pilot tunnel for reverse excavation at the portal zone located at high steep slope, and shows result of study on the appropriateness of a reverse excavation by means of 3D numerical analysis. Result of 3D numerical analysis for reverse excavation at high steep slope shows that pilot tunneling will be applicable to start from the point $20{\sim}25m$ before the portal from inside the tunnel.

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.