• Title/Summary/Keyword: 역광보정

Search Result 14, Processing Time 0.022 seconds

Implementation of Image Enhancement by Region of Interest Modification and Backlight Compensation (관심영역수정 및 역광보정을 통한 이미지향상 구현)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.655-657
    • /
    • 2016
  • 우리는 빛의 정도에 따라 사진의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 색감과 질감의 경우, 기존과는 다른 방법으로 질감과 색감을 추출했다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야한다. 관심영역은 사진 속 원하는 부분의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 통하여 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다.

Backlight Compensation by Using a Novel Region of Interest Extraction Method (새로운 관심영역 추출 방법을 이용한 역광보정)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.321-328
    • /
    • 2017
  • We have implemented a technique to correct the brightness, saturation, and contrast of an image according to the degree of light, and further compensate the backlight. Backlight compensation can be done automatically or manually. For manual backlight compensation, we have to select the region of interest (ROI). ROI can be selected by connecting the outline of the desired object. We make users select the region delicately with the new magnetic lasso tool. The previous lasso tool has a disadvantage that the start point and the end point must be connected. However, the proposed lasso tool has the advantage of selecting the region of interest without connecting the start point and the end point. We can automatically obtain various results of backlight compensation by adjusting the number of k-means clusters for texture extraction and the threshold value for binarization.

Adaptive Retinex Back-light Compensation Algorithm Using Skewness Information of Image (영상에서 비대칭도 정보를 이용한 적응적인 Retinex 역광 보정 알고리즘)

  • Jeong, Jae-Hyun;Kang, Duk-Goo;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.497-504
    • /
    • 2011
  • This paper presents an adaptive retinex algorithm, In order to solve typical problems of retinex algorithm such as expensive computational cost, halo artifact, and color distortion, a function of skewness that represents a statistical distribution of pixels is defined to compensate contrast and color distortion. The experimental results show that the proposed algorithm leads to subjectively better performance than typical retinex algorithm, and that the proposed algorithm has the capability to reduce approximately 40% computational cost than typical retinex algorithm.

Efficiently Color Compensation in Back-Light Image using Fuzzy c-means Clustering Algorithm (FCM을 이용한 역광 이미지의 효율적인 컬러 색상 보정)

  • Kim, Young-Tak;Yu, Jae-Hyoung;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.37-38
    • /
    • 2011
  • 본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.

  • PDF

K-Retinex Algorithm for Fast Back-Light Compensation (역광 사진의 빠른 보정을 위한 Retinex 알고리즘의 성능 개선)

  • Kang, Bong-Hyup;Jeon, Chang-Won;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.126-136
    • /
    • 2007
  • This paper presents an enhanced algorithm for compensating the visual quality in back-light image. Current cameras do not represent all details of scene into human's eye. Saturation and underexposure are common problems in back-light image. Retinex algorithm, derived from Land's theory on human visual perception is known to be effective in enhancing the contrast. However, its weaknesses are long processing time and low contrast of bright area in back-light scene because of compensating the details of dark area. In this paper, K-Retinex algorithm is proposed to reduce the processing time and enhance the contrast in both dark and bright area. To show the superiority of proposed algorithm, we compare the processing time, local standard deviation and contrast per pixel of each area above.

Retinex Algorithm Improvement for Color Compensation in Back-Light Image Efficently (역광 이미지의 효율적인 컬러 색상 보정을 위한 Retinex 알고리즘의 성능 개선)

  • Kim, Young-Tak;Yu, Jae-Hyoung;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • This paper proposes a new algorithm that improve color component of compensated image using Retinex method for back-light image. A back-light image has two regions, one of the region is too bright and the other one is too dark. If an back-light image is improved contrast using Retinex method, it loses color information in the part of brightness of the image. In order to make up loss information, proposed algorithm adds color components from original image. The histogram can be divided three parts that brightness, darkness, midway using K-mean (k=3) algorithm. For the brightness, it is used color information of the original image. For the darkness, it is converted using by Retinex method. The midway region is mixed between original image and Retinex result image in the ratio of histogram. The ratio is determined by distance from dark area. The proposed algorithm was tested on nature back-light images to evaluate performance, and the experimental result shows that proposed algorithm is more robust than original Retinex algorithm.

Implementation of color CCD Camera using DSP(GCB4101) (디지털 신호처리 칩(GCD4101)을 사용한 컬러 CCD 카메라 구현)

  • Kwon, O-Sang;Lee, Eung-Hyuk;Min, Hong-Ki;Chung, Jung-Seok;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.69-79
    • /
    • 1999
  • The research and implementation was preformed on high-resolution CCTV camera with CCD exclusive DSP conventional analog signal processor CCTV camera has its limit on auto exposure(AE), auto white balance(AWB), back light compensation(BLC) processing, severe distortion and noise of image, manual control parameter setting, etc. In our study, to resolve the problems in conventional CCTV camera, we made it possible to control AE, AWB, BLC automatically by the use of the DSP, which are used exclusively in the CCD camera produced domestically, and the microcontroller. And we utilized the function of screen display of microcontroller for the user-friendly interface to control CCD camera. And the electronic variable resister(EVR) was used to avoid setting parameters manually in the level of manufacturing process. As the result, It became possible to control parameters of the camera by program. And the cost-down effect was accomplished by improving the reliability of parameter values and reducing the efforts in setting parameters.

  • PDF

Video Backlight Compensation Algorithm Based on Reliability of Brightness Variation (밝기 변화량의 신뢰도에 기반한 역광 비디오 영상의 보정 알고리듬)

  • Hyun, Dae-Young;Heu, Jun-Hee;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.117-126
    • /
    • 2010
  • In the case of failure images with controlling lighting like backlighting and excessive frontlinghting, the compensation scheme for a specific area in an image is required. The interested region is first selected by user in our method to compensate the first frame. Then we define the matching function of brightness and energy function is proposed with weight of matching function and the relationship among the neighbors. Finally, the energy is minimized by the graph-cut algorithm to compensate the brightness of the first frame. Other frames are straightforwardly compensated using the results of the first frame. The brightness variations of the previous frame is transmitted to the next frame via motion vectors. The reliability of the brightness variation is calculated based on the motion vector reliability. Video compensation result is achieved by the process of the image case. Simulation show that the proposed algorithm provides more natural results than the conventional algorithms.

Hardware Design of Real-Time Wide Dynamic Range Algorithm Based on Tone Mapping Method for Image Quality Enhancement (영상 품질 향상을 위한 색 사상 기반 실시간 광역역광보정 알고리즘의 하드웨어 설계)

  • Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.270-275
    • /
    • 2018
  • Method for improving the image quality are divided into a tone mapping method and a retinex theory based method. Typical example of the image quality enhancement method using tone mapping method is one using image characteristics like histogram. In this paper, we propose a hardware design of real-time wide dynamic range algorithm based on tone mapping method for image quality enhancement. The proposed method divides the image into the luminance and chroma components and then improves the chroma region based on the variation of the luminance component. Adding to that, it is designed to be compatible with the existing 8-bit signal, using high quality image with 12-bit extended signal according to the desired flow. As a result of simulation, it is confirmed that the image quality is improved, and the hardware design is confirmed that the real-time operations is possible at the maximum frequency at 138.26MHz.

Implementation of Image Enhancement Algorithm for Embedded System (임베디드 시스템을 위한 영상 개선 알고리즘 구현)

  • An, Jeong-yeon;Rhee, Sang-Burm
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.473-480
    • /
    • 2009
  • This paper is to enhance a color image running in the PXA255 ARM processor based on embedded linux environments. Retinex is one of the representative algorithm for image enhancement in the previous research. However, retinex is not suitable the run on the embedded system because of its long processing time. So, we proposed the image enhancement algorithm for embedded system, with less quantity of operation and the effect equivalent to retinex. To achieve this goal, we propose and implement the image enhancement algorithm, which utilizes the image formation model and gamma correction to be effective in a back-light and dark image. The proposed algorithm converts the color space from RGB to HSV, and then V and S channels are processed. In order to optimize the proposed method in the PXA255 ARM processor, quantity of calculation is reduced. The performance of the proposed algorithm was evaluated through qualitative method and quantitative method. The results show that brightness and contrast are improved with less quantity of operation.