• Title/Summary/Keyword: 여자유도 로봇

Search Result 6, Processing Time 0.028 seconds

A Study on Torque Optimization of Planar Redundant Manipulator using A GA-Tuned Fuzzy Logic Controller (유전자 알고리즘으로 조정된 퍼지 로직 제어기를 이용한 평면 여자유도 매니퓰레이터의 토크 최적화에 관한 연구)

  • Yoo, Bong-Soo;Kim, Seong-Gon;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.642-648
    • /
    • 2008
  • A lot of researches on the redundant manipulators have been focused mainly on the minimization of joint torques. However, it is well-known that the most dynamic control algorithms using local joint torque minimization cause huge torques which can not be implemented by practical motor drivers. A new control algorithm which reduces considerably such a huge-required-torque problem is proposed in this paper. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar robot. Simulation results show that the proposed algorithm works well.

A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구)

  • Yoo, Bong-Soo;Koo, Seong-Wan;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.787-796
    • /
    • 2008
  • When the manipulator collides with surroundings, there occurs an impulse. To reduce the impulse, the self motion should maintain the manipulator's position by the minimally effective mass. At this time, we can use the local joint torque minimization algorithm to resolve the redundancy. In this study, to reduce the impulse and damages by the impact between the manipulator and surroundings, new control algorithm for the minimization of the joint torque using the kinetic redundancy and the impact minimization is proposed. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar manipulator. Simulation results show that the proposed algorithm works well.

Study on Interaction of Planar Redundant Manipulator with Environment based on Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터와 환경과의 상호작용에 관한 연구)

  • Yoo, Bong-Soo;Kim, Sin-Ho;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.388-397
    • /
    • 2009
  • There are many tasks which require robotic manipulators interaction with environment. It consists of three control problems, i.e., position control, impact control and force control. The position control means the way of reaching to the environment. The moment of touching to the environment yields the impact control problem and the force control is to maintain the desired force trajectory after the impact with the environment. These three control problems occur in sequence, so each control algorithm can be developed independently. Especially for redundant manipulators, each of these three control problems has been important independent research topic. For example, joint torque minimization and impulse minimization are typical techniques for such control problems. The three control problems are considered as a single task in this paper. The position control strategy is developed to improve the performance of the task, i.e., minimization of the individual joint torques and impulse. Therefore, initial conditions of the impact control problem are optimized at the previous position control algorithm. Such a control strategy yields improved result of the impact control. Similarly, the initial conditions for the force control problem are indirectly optimized by the previous position control and impact control strategies. The force control algorithm uses the individual joint torque minimization concept. It also minimizes the force disturbances. The simulation results show the proposed control strategy works well.

Redundant Design of Wearable Robot Mechanism for Upper Arm (여자유도를 이용한 상지 착용형 로봇의 메커니즘 설계)

  • Lee, Young-Su;Hong, Sung-Jun;Jang, Hye-Yeon;Jang, Jae-Ho;Han, Chang-Su;Han, Jung-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.134-141
    • /
    • 2009
  • Recently, many researchers have tried to develop wearable robots for various fields such as medical and military purposes. We have been studying robotic exoskeletons to assist the motion of persons who have problems with their muscle function in daily activities and rehabilitation. The upper-limb motions (shoulder, elbow and wrist motion) are especially important for such persons to perform daily activities. Generally for shoulder motion 300F is needed to describe its motion(extension/flexion, abduction/adduction, internal/external rotation) but we have used a redundant actuator thus making a 4 DOF system. In this paper, we proposed the mechanism design of the exoskeleton which consists of 4-DOF for shoulder and 1-DOF for elbow robotic exoskeleton to assist upper-limb motion. Then we compared the new mechanism design and prototype mechanism design. Here we also analyze the proposed system kinematically to find out and to avoid the singular point. This research will ensure that the proposed wearable robot system make human's motion more powerfully and more easily.

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF