• 제목/요약/키워드: 여름 몬순

Search Result 51, Processing Time 0.027 seconds

Diagnosis of Northeast Asian Summer Precipitation using the Western North Pacific Subtropical High Index (북서태평양 아열대고기압 지수를 이용한 북동아시아 여름철 강수의 진단)

  • Kwon, MinHo
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.102-106
    • /
    • 2013
  • The intensity of the East Asian summer monsoon has a negative correlation with that of the western North Pacific summer monsoon. Based on the relationship, we suggest the potential predictability of Northeast Asian summer precipitation by using the relationship. The western North Pacific subtropical high (WNPSH) properly represents the intensity of the western North Pacific summer monsoon. It also dominates climate anomalies in the western North Pacific-East Asian region in summertime. The estimates of the Northeast Asian summer rainfall anomalies using WNPSH variability have a greater benefit than those using the western North Pacific monsoon index.

Comparison and Analysis of Characteristics of East Asian Monsoon Using Representative GCMs (대표 GCM을 이용한 동아시아 몬순 특성 비교 및 분석)

  • Lee, Eun-Jeong;Cho, Jaepil;Park, Jihoon;Jung, Imgook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.203-203
    • /
    • 2018
  • 기후변화로 인한 몬순 강수량 변동은 세계에서 가장 인구가 많은 몬순 지역의 농업, 수자원, 에너지, 경제 및 사회와 밀접한 관련이 있으므로, 미래의 몬순 강수량 변화를 예측하는 것은 매우 중요하다. 결합 모델 상호 비교 프로젝트의 5 단계(CMIP5)에서는 복사 강제력이 2100년 이후에 약 2.6, 4.5, 6.0 및 $8.5Wm^{-2}$의 증가로 안정화된다고 가정하는 4가지의 다양한 시나리오(RCP 2.6, 4.5, 6.0, 8.5) 자료를 제공하고 있다. 본 연구에서는 한반도의 강수량에 큰 영향을 미치는 동아시아 여름 몬순의 기후 변화에 대해 더욱 집중하고자 한다. CMIP5 모형 자료에 대하여 대표 GCM 모형 선정을 하기 위해, 수문 분야에서 활용 가능한 기후모델 성능 평가 matrix를 구축하였다. 본 연구에서 사용된 평가 matrix는 동아시아 및 한반도 지역을 대상으로 CMIP5 모형의 강수 및 최고?최저기온에 대한 평균 기후장(spatial climatology)과 연변동성(interannual variability)의 모사력을 각 모형별, 계절별 비교뿐만 아니라 극한기후 모사력도 함께 고려하여, 대표 GCM을 선정하였다. 기후변화에 따른 동아시아 지역의 몬순 특성을 더욱 자세히 살펴보기 위해, 대표 GCM으로 선정된 모형들의 2가지 시나리오(RCP4.5와 RCP.5)에 대해 동아시아 지역에서의 여름 몬순 강수 변동 및 특성을 분석 및 비교하였다.

  • PDF

East Asian Monsoon History as Indicated by C/N Ratios and ${\delta}^{13}C$ Evidence from the Estuarine Tidal Flat Sediments in the West Coast of Korea (서해안 염하구 습지 퇴적물의 지화학적 분석 (C/N 및 ${\delta}^{13}C$)에 기반한 동아시아 몬순 변동 연구)

  • Park, Jung-Jae;Shin, Young-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.5
    • /
    • pp.541-552
    • /
    • 2010
  • Geochemical and physical investigations such as ${\delta}^{13}C$ isotope ratio, carbon/nitrogen (C/N) ratio, magnetic susceptibility (MS), and particle size analyses were carried out on the estuarine tidal flat sediments from the west coast of Korea in order to reconstruct the East Asian summer monsoon variability during the late Pleistocene and Holocene Our results indicated that the summer monsoon probably peaked around 7,700-7,800 yr BP and then started to decline about 7,400 yr BP in the Korean peninsular, and that the monsoon was relatively weak between 24,000-24,500 yr BP but relatively strong between 18,500-19,500 yr BP during the Last Glacial Maximum. Our estuarine geochemical data have proven to be valuable as a new proxy for detecting the shifts in monsoon strength. This new evidence will be helpful, especially for Korean paleoenvironmental studies with few proxy data archives.

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

Future Projection and Analysis of Water Resources on Megacity in Asian Monsoon Region (아시아 몬순지역 메가시티의 미래 수자원 전망 및 분석)

  • Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • 전 세계적인 인구증가와 도시화로 메가시티가 점차 증가하고 있으며, 2016년 기준 37개의 메가시티 중 60% 이상(23개)이 아시아 지역에 집중되어 있다. 통상, 메가시티는 불투수율이 높고 인구가 밀집되어 있어 수재해로 인한 피해규모가 크며, 인구증가에 따른 용수부족 및 수질악화로 인해 수자원 확보가 어렵다. 특히, 아시아 지역은 몬순의 영향으로 수자원의 변동성이 크며, 최근 기후시스템의 변화는 몬순의 시 공간적 변동을 증대시킬 것으로 전망된다. 즉, 아시아 몬순지역에 위치하는 메가시티는 기후변화에 더욱 취약하며 이에 따른 수자원 확보 및 수자원 관리의 어려움은 더욱 가중될 것으로 예상된다. 본 연구에서는 AR5 기후변화 시나리오를 활용하여 아시아 몬순지역 내 메가시티를 대상으로 미래기간에 대한 기온, 강수량, 유출량을 전망하고 그 특성을 분석하고자 한다. 국가별 인구 통계자료를 기반으로 아시아 몬순지역 내 존재하는 19개 메가시티를 선정하였다. 기후전망을 위해 테일러 다이어그램을 활용하여 GCMs의 몬순모의 성능을 평가하였으며, 아시아 몬순특성을 잘 반영하는 다수의 GCMs을 선정하였다. 아시아 메가시티를 평가하고자 이중선형보간기법(Bilinear method)을 적용하여 $0.5^{\circ}$ 간격의 공간해상도로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 APHRODITE의 일단위 강수자료를 이용하였으며, VIC (Variable Infiltration Capacity) 모형을 이용하여 유출량 분석을 수행하였다. 평가결과 각 메가시티의 평균기온, 강수 및 유출량이 모든 미래기간 2020s, 2050s, 2080s에서 다르게 나타났다. 해안/내륙, 경 위도 등 메가시티의 지리적 위치에 따른 변화특성 분석을 수행하였으며, 각 메가시티에 대한 여름 및 겨울철 몬순의 변화 특성을 분석하였다.

  • PDF

Seasonal Variation Patterns of Tidal Flat Sediments in Semi-enclosed Hampyong and Kwangyang Bays, West and South Coasts of Korea (한반도 서해안과 남해안의 반페쇄된 만에서 조간대 퇴적물의 계절변화에 관한 비교 연구: 서해안의 함평만과 남해안의 광양만)

  • Ryu, Sang-Ock
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.578-591
    • /
    • 2003
  • To investigate the seasonal variation patterns of tidal flat sediments in semi-enclosed Hampyong and Kwangyang Bays, respectively west and south coasts of Korea, accumulation rate and grain-size in the sediments were monitored during 2${\sim}$4 years. The mud flats in the northern and eastern parts of Hampyong Bay were eroded in summer and deposited in winter, but mixed flats in the southern part of the bay show reversed seasonal variations to the mud flats. These variations are most likely connected with wave actions induced by monsoon and physiographic setting of the tidal flats in the bay. In contrast, the tidal flats of Kwangyang Bay were eroded in summer and deposited in other seasons except summer, different from the case of Hampyong Bay. The physiography of Kwangyang Bay are characterized by dominant flood tides and weak wave actions. However, in summer, the surface sediments were abruptly eroded by occasional typhoons and heavy rainfall. These weather conditions appear to be important factors to accelerate erosion on the tidal flat in semi-enclosed bays, south coast of Korea.

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

On the characteristics of the 1993/1994 east Asian summer monsoon convective activities using GMS high cloud amount

  • ;;Moon, Sung-Euii;Sohn, Seoung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.1-21
    • /
    • 1995
  • The characteristics of the Asian summer monsoon have been investigated for the periods of 1993/1994, the contrasting years in a view of the summer monsoon precipitation. In order to investigate the monsoon features over the eastern Asian monsoon region, the cloudiness(using the extensive data derived by the geostationary meteorological satellite), the condition of underlying surface including sea-surface temperature, and the summer rainfall are analyzed and some comparisons with 1993 and 1994 are also made and the characteristic differences are discussed. An analysis of the 2-degree latitude-longitude gridded 5-day mean high cloud amount data shows the detailed movement and persistence of the convective activities. In order to describe the spatial and temporal structures of the intraseasonal oscillation for the movement and evolution of the monsoon cloud, the extended empirical orthogonal fnction analysis with the twenty-day window size is used for the each year. Also, in order to find out the periodicity of the equatorial convective cluster, Fourier harmonic analysis is applied to the each year. The most prevailing intraseasonal oscillations of high cloud amount are 61 day mode and 15day mode in the equatorial and the subtropical oceans. However it was found that the most prevailing modes over the equatorial western Pacific and Indian Ocean were different for each year, hence raising the possibillity that the contrasting monsoon presipitation may be more fundamentally related to the interaction of intraseasonal oscillations and seasonal variation of convective activities over the lower latitude ocean.

Recent Changes in Relationship between East Asian and WNP Summer Monsoons (최근 동아시아 여름몬순과 북서태평양 여름몬순의 관계 변화)

  • JiYun Shin;Kang-Jin Lee;MinHo Kwon
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.319-323
    • /
    • 2024
  • It has been recognized that interannual relationship between Northeast Asian and western North Pacific (WNP) summer monsoon intensities has a negative correlation with a statistical significance. This teleconnection can be understood by the responses to the stationary Rossby wave, which is forced by variability of the western North Pacific summer monsoon intensity. In addition, the relationship between two monsoon intensities have a large variability on decadal time-scale associated with adjacent climate variability. The study for the recent changes in these long-term relationships has not been reported so far. This study suggests the recent relationship between Northeast Asian and WNP summer monsoons with an extension of the analysis period in the previous studies. Based on the reanalysis datasets, this study also shows atmospheric teleconnection changes associated with El Nino in summertime during the different decadal periods. This study also suggests the possible reasons for the analysis results in terms of teleconnection changes.

A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis (NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측)

  • Kwon, MinHo;Lee, Kang-Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • The seasonal predictability of the intensity of the Northeast Asian summer monsoon is low while that of the western North subtropical high variability is, when state-of-the-art general circulation models are used, relatively high. The western North Pacific subtropical high dominates the climate anomalies in the western North Pacific-East Asian region. This study discusses the predictability of the western North Pacific subtropical High variability in the National Centers for Environmental Prediction Climate Forecast System (NCEP CFS). The interannual variability of the Northeast Asian summer monsoon is highly correlated with one of the western North Pacific subtropical Highs. Based on this relationship, we suggest a seasonal prediction model using NCEP CFS and canonical correlation analysis for Northeast Asian summer precipitation anomalies and assess the predictability of the prediction model. This methodology provides significant skill in the seasonal prediction of the Northeast Asian summer rainfall anomalies.